Page 613 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 613

Scheme 6.18. (Continued)                                  587

                  8 h                                                                       SECTION 6.5
                                             I                                            [2,3]-Sigmatropic
                                     1)                  CO 2 CH 3
                             CO CH                                                         Rearrangements
                         N     2  3
                                                     N      CH
                                     2)  K 2 CO 3              2
                     Ph
                                        DMF, DBU  Ph
                                                           48%
                  a. K. Ogura, S. Furukawa, and G. Tsuchihashi, J. Am. Chem. Soc., 102, 2125 (1980).
                  b. V. Cere, C. Paolucci, S. Pollicino, E. Sandri, and A. Fava, J. Org. Chem., 43, 4826 (1978).
                  c. E. Vedejs and M. J. Mullins, J. Org. Chem., 44, 2947 (1979).
                  d. R. C. Hartley, S. Warren, and I. C. Richards, J. Chem. Soc., Perkin Trans. 2, 507 (1994).
                  e. E. Vedejs, M. J. Arco, D. W. Powell, J. M. Renga, and S. P. Singer, J. Org. Chem., 43, 4831 (1978).
                  f. L. N. Mander and J. V. Turnerk, Aust. J. Chem., 33, 1559 (1980).
                  g. K. Honda, I. Yoshii, and S. Inoue, Chem. Lett., 671 (1996).
                  h. A. P. A. Arbore, D. J. Cane-Honeysett, I. Coldham, and M. L. Middleton, Synlett, 236 (2000).


              6.5.3. Anionic Wittig and Aza-Wittig Rearrangements

                  The [2,3]-sigmatropic rearrangement pattern is also observed with anionic species.
              The most important case for synthetic purposes is the Wittig rearrangement, in which
              a strong base converts allylic ethers to  -allylalkoxides. 291  Since the deprotonation at

              the   -carbon must compete with deprotonation of the  -carbon in the allyl group,
              most examples involve a conjugated or EWG substituent Z. 292


                      ZCH 2  O           O          O –   H +  OH
                                base
                                     ZHC _      ZHC           ZCHCHCH   CH 2
                                                                 R
                         R              R         R

                  The stereochemistry of the Wittig rearrangement can be predicted in terms of a
              cyclic five-membered TS in which the  -substituent prefers an equatorial orientation. 293


                                        H             H
                                            R 2           R 2
                                        ..
                                           O             O –
                                        Z             Z


              A consistent feature of the stereoselectivity is a preference for E-configuration at the
              newly formed double bond. The reaction can also show stereoselectivity at the newly
              formed single bond. This stereoselectivity has been carefully studied for the case in


              291
                 J. Kallmarten, in Stereoselective Synthesis: Houben Weyl Methods in Organic Chemistry, Vol E21d,
                 R. W. Hoffmann, J. Mulzer, and E. Schaumann, eds., G. Thieme Verlag, Stuttgart, 1996, pp. 3810 ff.
              292   For a review of [2,3]-sigmatropic rearrangement of allyl ethers, see T. Nakai and K. Mikami, Chem.
                 Rev., 86, 885 (1986).
              293
                 R. W. Hoffmann, Angew. Chem. Int. Ed. Engl., 18, 563 (1979); K. Mikami, Y. Kimura, N. Kishi, and
                 T. Nakai, J. Org. Chem., 48, 279 (1983); K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, 40, 2303
                 (1984); Y.-D. Wu, K. N. Houk, and J. A. Marshall, J. Org. Chem., 55, 1421 (1990).
   608   609   610   611   612   613   614   615   616   617   618