Page 710 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 710

686                                                         C H
                                                                   2 5
                                       CH 3                           CH 3
                                                       Et 2 CuLi             OCH Ph
                                                                                 2
      CHAPTER 8
                                                    2
                                HOCH      O     OCH Ph       HOCH 2
      Reactions Involving            2                                                  Ref. 42
      Transition Metals                                                 OH
                       8.1.2.3. Conjugate Addition Reactions. All of the types of mixed cuprate reagents
                       described in Scheme 8.1 react by conjugate addition with enones. A number of
                       improvements in methodology for carrying out the conjugate addition reactions have
                       been introduced. The addition is accelerated by trimethylsilyl chloride alone or in
                       combination with HMPA. 43  Under these conditions the initial product is a silyl
                       enol ether. The mechanism of the catalysis remains uncertain, but it appears that
                       the silylating reagent intercepts an intermediate and promotes carbon-carbon bond
                       formation, as well as trapping the product by O-silylation. 44
                                                                            OTMS
                                                                          R      R″
                                                             – TMS  Cl  H
                                                        [R Cu ]
                                                          2
                                               O            O       fast  R′  H
                               R CuLi + R′CH  CHCR″     H      R″   slow     – O
                                2
                                                        R′   H             R    C  R″
                                                                          H    C
                                                                           R′    H

                       This technique also greatly improves yields of conjugate addition of cuprates
                       to    -unsaturated esters and amides. 45  Trimethylsilyl cyanide also accelerates
                       conjugate addition. 46  Another useful reagent is prepared from a 1:1:1 ratio of organo-
                       lithium reagent, CuCN, and BF -O C H 	 . 47  The BF appears to interact with the
                                                                    3
                                                      2
                                                         5 2
                                                 3
                                                                  48
                       cyanocuprate reagent, giving a more reactive species. The efficiency of the conjugate
                       addition reaction is also improved by the inclusion of trialkylphosphines. 49  Even
                       organocopper reagents prepared from a 1:1 ratio of organolithium compounds are
                       reactive in the presence of phosphines. 50
                                             O                          Ph    O
                                                              H ) P
                                                          (n-C 4 9 3
                                (CH ) CHCH  CHCCH  + PhCu·LiI     (CH ) CHCHCH CCH 3
                                                                             2
                                                                    3 2
                                                 3
                                  3 2
                                                                                 84%
                        42
                          J. A. Marshall, T. D. Crute, III, and J. D. Hsi, J. Org. Chem., 57, 115 (1992).
                        43   E. J. Corey and N. W. Boaz, Tetrahedron Lett., 26, 6019 (1985); E. Nakamura, S. Matsuzawa,
                          Y. Horiguchi, and I. Kuwajima, Tetrahedron Lett., 27, 4029 (1986); S. Matsuzawa, Y. Horiguchi,
                          E. Nakamura, and I. Kuwajima, Tetrahedron, 45, 449 (1989); C. R. Johnson and T. J. Marren, Tetra-
                          hedron Lett., 28, 27 (1987); S. H. Bertz and G. Dabbagh, Tetrahedron, 45, 425 (1989); S. H. Bertz and
                          R. A. Smith, Tetrahedron, 46, 4091 (1990); K. Yamamoto, H. Ogura, J. Jukuta, H. Inoue, K. Hamada,
                          Y. Sugiyama, and S. Yamada, J. Org. Chem., 63, 4449 (1998); M. Kanai, Y. Nakagawa, and K. Tomioka,
                          Tetrahedron, 55, 3831 (1999).
                        44
                          M. Eriksson, A. Johansson, M. Nilsson, and T. Olsson, J. Am. Chem. Soc., 118, 10904 (1996).
                        45
                          A. Alexakis, J. Berlan, and Y. Besace, Tetrahedron Lett., 27, 1047 (1986).
                        46   B. H. Lipshutz and B. James, Tetrahedron Lett., 34, 6689 (1993).
                        47
                          T. Ibuka, N. Akimoto, M. Tanaka, S. Nishii, and Y. Yamamoto, J. Org. Chem., 54, 4055 (1989).
                        48   B. H. Lipshutz, E. L. Ellsworth, and T. J. Siahaan, J. Am. Chem. Soc., 111, 1351 (1989); B. H. Lipshutz,
                          E. L. Ellsworth, and S. H. Dimock, J. Am. Chem. Soc., 112, 5869 (1990).
                        49   M. Suzuki, T. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 1247 (1980).
                        50
                          T. Kawabata, P. A. Grieco, H.-L. Sham, H. Kim, J. Y. Jaw, and S. Tu, J. Org. Chem., 52, 3346 (1987).
   705   706   707   708   709   710   711   712   713   714   715