Page 861 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 861

OH                 H    H                          837
                 CH 3  H          PhCH  O              PhCH  O
                                           Ph                                               SECTION 9.3
                                                                        2
                                                                            4 9 3
                   H   CH Sn(C H )  BF 3        CH 3     BF 3   CH 3  CH Sn(C H )      Organotin Compounds
                         2
                              4 9 3
                                             >98% syn
              Synclinal and antiperiplanar conformations of the TS are possible. The two TSs are
              believed to be close in energy and either may be involved in individual systems.
              An electronic   interaction between the stannane HOMO and the carbonyl LUMO,
              as well as polar effects appear to favor the synclinal TS and can overcome the
              unfavorable steric effects. 161b
162  Generally the synclinal TS seems to be preferred for
              intramolecular reactions. The steric effects that favor the antiperiplanar TS are not
              present in intramolecular reactions, since the aldehyde and the stannane substituents
              are then part of the intramolecular linkage.

                        CH SnBu 3                        CH 3
                          2
                                       CH             H     R
                   H     R                3                                  CH 3
                                    R                                     R
                CH 3  O +  H        HO               H –  O +  CH SnBu    HO
                   –
                  F B                                F 3  B    2   3
                   3
                 antiperiplanar        syn            synclinal             syn
                  With chiral aldehydes, reagent approach is generally consistent with a Felkin
              model. 163  This preference can be reinforced or opposed by the effect of other
              stereocenters. For example, the addition of allyl stannane to 1,4-dimethyl-3-(4-
              methoxybenzyloxy)pentanal is strongly in accord with the Felkin model for the anti
              stereoisomer but is anti-Felkin for the syn isomer.

                                                      SnBu
                                                         3
                        OPMB
                                    SnBu 3  CH                  OH  OPMB
                O  CH                        3     H
                              )
                         CH(CH 3 2           O     H
                                          F B                             )
                                  BF       3                         CH(CH 3 2
                      CH 3          3
                                              H   OPMB            CH 3
                                                iPr  Felkin      > 99:1 syn
                                                          SnBu 3
                                                                      OH  OPMB
                                                 H     CH
                         OPMB                            3
                                        SnBu 3         H                        )
                  O  CH                       F B  O                      CH(CH 3 2
                          CH(CH )              3
                               3 2                                     CH 3
                                     BF           H   OPMB
                       CH              3
                         3
                                                    iPr  anti Felkin   87:13 anti
                  When an aldehyde subject to chelation control is used, the syn stereoisomer
              dominates, with MgBr as the Lewis acid. 164
                                2
              162   S. E. Denmark, E. J. Weber, T. Wilson, and T. M. Willson, Tetrahedron, 45, 1053 (1989).
              163   D. A. Evans, M. J. Dart, J. L. Duffy, M. G. Yang, and A. B. Livingston, J. Am. Chem. Soc., 117, 6619
                 (1995); D. A. Evans, M. J. Dart, J. L. Duffy, and M. G. Yang, J. Am. Chem. Soc., 118, 4322 (1996).
              164
                 G. E. Keck and E. P. Boden, Tetrahedron Lett., 25, 265 (1984); G. E. Keck, D. E. Abbott, and
                 M. R. Wiley, Tetrahedron Lett., 28, 139 (1987).
   856   857   858   859   860   861   862   863   864   865   866