Page 982 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 982

958              When X−YisCl C−Cl, the final product is a chloride. 288  Use of Cl C−Br gives the
                                                                               3
                                     3
                       corresponding bromide. 289
      CHAPTER 10
      Reactions Involving
      Carbocations, Carbenes,                   CCl 4                    +  CO
      and Radicals as Reactive       S   N            R  Cl  +                2
      Intermediates                                            Cl CS  N
                                                                3
                                         OCR
                                          O

                       The precise reaction conditions for optimal yields depend upon the specific reagents
                       and both thermal 290  and photochemical 291  conditions have been developed. Phenyl
                       thionocarbonates are easily prepared and are useful in radical generating reactions. 292
                       A variety of other thiono esters, including xanthates and imidazolyl thionocarbonates
                       also can be used. 293
                           Selenyl groups can be abstracted by stannyl radicals from alkyl and acyl selenides
                       to generate the corresponding radicals. 294  Among the types of compounds that react by
                       selenyl transfer are  -selenylphosphonates 295  and  -selenylcyanides. 296  The radicals
                       generated can undergo addition and/or cyclization. The chain reaction is propagated
                       by abstraction of hydrogen from the stannane.

                                 O                                         O
                                                           Bu SnH
                                                             3
                                                            AIBN
                          (C H O) PCHCH 3  +  CH 2  CHOC H          (C H O) PCHCH CH OC H
                                2
                            2 5
                                                                                    2
                                                                                       4 9
                                                                                 2
                                                                      2 5
                                                                          2
                                                     4 9
                                                           105°C
                                  SePh                                      CH 3     50%
                               OH   CPh     Bu SnH       OH CHPh
                                  C           3
                                             AIBN
                                                               CN
                                 CH CHCN                       91%
                                    2
                                     SePh
                           Trialkylboranes, especially triethylborane, are used in conjunction with O to
                                                                                         2
                       generate radicals. 297  The alkyl radicals are generated by breakdown of a borane-oxygen
                       adduct. An advantage this method has over many other radical initiation systems is

                       that it proceeds at low temperature, e.g., −78 C.
                                            R 3 B  +  O 2   . O  OBR   +  R .
                                                                   2
                                              .                 .
                                             R  +  O 2       RO 2
                                               .            RO BR   +  R .
                                            RO   +  R B       2  2
                                                   3
                                              2
                       288   D. H. R. Barton, D. Crich, and W. B. Motherwell, Tetrahedron Lett., 24, 4979 (1983).
                       289
                          D. H. R. Barton, R. Lacher, and S. Z. Zard, Tetrahedron Lett., 26, 5939 (1983).
                       290   D. H. R. Barton, J. L. Jaszberenyi, and D. Tang, Tetrahedron Lett., 54, 3381 (1993).
                       291   J. Bouivin, E. Crepon, and S. Z. Zard, Tetrahedron Lett., 32, 199 (1991).
                       292
                          M. J. Robins, J. S. Wilson, and F. Hansske, J. Am. Chem. Soc., 105, 4059 (1983).
                       293   D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1574 (1975).
                       294
                          J. Pfenninger, C. Heuberger, and W. Graf, Helv. Chim. Acta, 63, 2328 (1980); D. L. Boger and
                          R. J. Mathvink, J. Org. Chem., 53, 3377 (1988); D. L. Boger and R. J. Mathvink, J. Org. Chem., 57,
                          1429 (1992).
                       295   P. Balczewski, W. M. Pietrzykowski, and M. Mikolajczyk, Tetrahedron, 51, 7727 (1995).
                       296   D. L. J. Clive, T. L. B. Boivin, and A. G. Angoh, J. Org. Chem., 52, 4943 (1987).
                       297
                          C. Ollivier and P. Renaud, Chem. Rev., 101, 3415 (2001).
   977   978   979   980   981   982   983   984   985   986   987