Page 197 - Advanced Thermodynamics for Engineers, Second Edition
P. 197

184    CHAPTER 9 THERMODYNAMIC PROPERTIES OF IDEAL GASES





            Table 9.3 Enthalpy Coefficients for Selected Gases Found in Combustion Processes (Based on
             kJ/kmol, with the Temperature in K)
              Substance   a 5       a 4         a 3        a 2       a 1       a 6    h 0 [ a 0 kJ/kmol
                        0.0000    1.44392e-11  9.66990e-08   8.18100e-6  3.43328   3.84470  0.0000
                H 2
                CO      0.0000    2.19450e-12   3.22080e-8  3.76970e-4  3.317000  4.63284   1.13882e5
                        0.0000    6.57470e-12  1.95300e-9  2.94260e-4  3.34435  3.75863  0.0000
                N 2
                NO      0.0000    4.90360e-12   9.58800e-9  2.99380e-4  3.50174  5.11346  8.99147e4
                CO 2    0.0000    8.66002e-11   7.88542e-7  2.73114e-3  3.09590  6.58393   3.93405e5
                O 2     0.0000    1.53897e-11   1.49524e-7  6.52350e-4  3.25304  5.71243  0.0000
                H 2 O   0.0000    1.81802e-11  4.95240e-8  5.65590e-4  3.74292  9.65140e-1   2.39082e5
                CH 4   8.58611e-15  1.62497e-10   1.24402e-6  4.96462e-3  1.93529  8.15300   6.6930e4
                O       0.0000    1.38670e-11  1.00187e-7   2.51427e-4  2.76403  3.73309  2.46923e5


             Hence the enthalpy, internal energy, entropy and Gibbs energy can be evaluated as follows.

                Enthalpy
                                                           2     3      4
                                   h m ðTÞ¼<T a 1 þ a 2 T þ a 3 T þ a 4 T þ a 5 T
                                                     2      3     4     5
                                        ¼< a 1 T þ a 2 T þ a 3 T þ a 4 T þ a 5 T
                                             5
                                            X     i
                                        ¼<     a i T :                                    (9.31)
                                            i¼1

             Internal energy
                                                             2      3     4
                                u m ðTÞ¼<T a 1   1 þ a 2 T þ a 3 T þ a 4 T þ a 5 T
                                                        2     3      4     5
                                      ¼< a 1   1 T þ a 2 T þ a 3 T þ a 4 T þ a 5 T
                                          5
                                         X     i
                                      ¼<     a i T  <T ¼ h T  <T:                         (9.32)
                                          i¼1


             Entropy
                This is defined by Eqn (9.15) as
                                                           dp
                                                    dh m
                                               ds m ¼    <                                (9.15)
                                                     T      p
                Integrating Eqn (9.15) gives
                                                       T

                                                      Z
                                                         dh m       p
                                     s m ðTÞ¼ s m   s 0;m ¼   < ln     ;                  (9.20)
                                                          T         p 0
                                                      T 0
                                                                            Z  T     Z  T
                                                                               dh m      c p;m dT
                Equation (9.20) introduces some problems in solution. The first is that  ¼     ,
                                                                                T          T
                                                                             T 0      T 0
             and this results in ln (0) when T ¼ T 0 . Fortunately these problems can be overcome by use of the
   192   193   194   195   196   197   198   199   200   201   202