Page 292 - Advanced Thermodynamics for Engineers, Second Edition
P. 292
12.11 DISSOCIATION PROBLEMS 281
Evaluating the energy contained in the products at 2772 K gives
U P ðT P Þ U P ðT s Þ¼ 5195240 kJ
Constituent CO 2 H 2 O CO H 2 O 2 N 2
u 2772 125654.9 99196.2 70702.8 65594.3 74678.0 69948.5
u 298 7041.6 7223.3 6011.8 6043.1 6032.0 6025.8
Difference 118613.3 91972.9 64690.8 59551.2 68646.0 63922.7
n 7.2240 8.8596 0.776 0.1404 1.8472 52.222
These values are within 0.05% and hence satisfy the energy equation.
ALTERNATIVE METHOD FOR CALCULATING THE CHEMICAL EQUATION
The approach used above to calculate the coefficients in the chemical equation was based on the
degrees of dissociation of the two reactions occurring in this example. It was shown previously that this
approach is often the best for manual solution, but that a more general approach, in which a system of
simultaneous equations is developed, is better for computer solution. This second method will be
outlined below for one of the steps in the previous example.
First, Eqn (12.109) can be replaced by
(12.131)
C 8 H 18 þ 13:889ðO 2 þ 3:76N 2 Þ / aCO 2 þ bH 2 O þ cCO þ dH 2 þ eO 2 þ fN 2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n R ¼67:111 n P ¼aþbþcþdþeþf
If the first iteration of the previous approach is used, then T P ¼ 2800 K and, as given in Eqn
(12.110),
p rCO 2
¼ 6:58152
K p r1 ¼ 1=2
p rCO p
rO 2
p rCO p rH 2 O
¼ 6:8295
Kp r2 ¼
p
p rCO 2 rH 2
Now, by definition,
1=2
a n
p
p rCO 2 P 1=2
K p r1 ¼ 1=2 ¼ 1=2 1=2 0 (12.132)
p rCO p ce p
rO 2 P
which gives
2
K 2 a n P p 0 (12.133)
p r1 ¼ 2
c e p P
For the water gas reaction
p rCO p rH 2 O cb
(12.134)
K p r2 ¼ ¼ 6:8295 ¼
p ad
p rCO 2 rH 2