Page 295 - Advanced Thermodynamics for Engineers, Second Edition
P. 295

284    CHAPTER 12 CHEMICAL EQUILIBRIUM AND DISSOCIATION




                Rich mixture including dissociation is

              C 8 H 18 þ 11:36ðO 2 þ 3:76N 2 Þ
              |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                      n R ¼55:09

                                                                       5:7272   9
                                                                            a 1 þ a 2 O 2 þ 42:71N 2
              / 5:7272ð1   a 1 ÞCO 2 þ 9ð1   a 2 ÞH 2 O þð2:2728 þ 5:7272a 1 ÞCO þ 9a 2 H 2 þ
                                                                         2      2
                |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                                                n P ¼59:73þ2:8636a 1 þ4:5a 2
                                                                                         (12.146)
                It can be seen that this is a significantly more complex equation than for the weak mixture.
             Application of a computer program gives the final temperature and pressure, without dissociation,as
             2958.6 K and 64.15 bar respectively. The equilibrium constants are

                                                           p rCO 2
                                          K p r1  ¼ 6:58152 ¼  1=2
                                                          p rCO p
                                                              rO 2
                                                                                        (12.147)
                                                          p rCO p rH 2 O
                                          K p r2  ¼ 6:82925 ¼
                                                              p
                                                          p rCO 2 rH 2
                Substituting for the mole fractions gives
                                     p;                         p;                        p
                        5:7272ð1   a 1 Þ      ð2:2728 þ 5:7272a 1 Þ      ð2:8636a 1 þ 4:5a 2 Þ
                 p CO 2  ¼               p CO ¼                     p O 2  ¼
                             n P                      n P                       n P
                                                                                        (12.148)
                Hence
                                                          2      2
                            K 2                     5:7272 ð1   a 1 Þ n P     p 0       (12.149)
                                           ð2:2728 þ 5:7272a 1 Þ ð2:8636a 1 þ 4:5a 2 Þ p
                              p r1  ¼ 43:3164 ¼             2
                Similarly


                                                               9a 2
                                               9ð1   a 2 Þ
                                                                   p                    (12.150)
                                                       p; p H 2
                                        p H 2 O ¼            ¼
                                                  n P           n P
             and
                                                         1   a 2
                                                                                        (12.151)
                         ð2:2728 þ 5:7272a 1 Þ  9  ð1   a 2 Þ    ð2:2728 þ 5:7272a 1 Þ
                   K p r2  ¼                           ¼
                                                           a 2
                               9a 2   5:7272ð1   a 1 Þ             5:7272ð1   a 1 Þ
                               equations (Eqns (12.149) and (12.151)) are again nonlinear equations in a 1 and
                The K p r1  and K p r2
             a 2 , and they can be solved in the same manner as before.
                The solution to this problem, allowing for dissociation is a final temperature of 2891 K and a final
             pressure of 62.99 bar. This results in the following degrees of dissociation: a 1 ¼ 0:0096; a 2 ¼
             0:05540: It is left to the reader to prove these values are correct.
             EXAMPLE 6: THE FORMATION OF NITRIC OXIDE
             When a mixture of oxygen and nitrogen is heated above about 2000 K, these two elements will join
             together to form nitric oxide. The elements combine in this way because the energy of formation of
   290   291   292   293   294   295   296   297   298   299   300