Page 300 - Advanced Thermodynamics for Engineers, Second Edition
P. 300

12.12 CONCLUDING REMARKS           289





                Table 12.3 Equilibrium Constantsdcont’d
                 Equilibrium
                 Constant K pr
                                   ðp=p 0 Þ         ðp=p 0 Þ H 2 O                    ðp=p 0 Þ NO
                 Temperature            CO 2  1=2           1=2  ðp=p 0 Þ CO  ðp=p 0 Þ H 2 O  1=2  1=2
                 (K)            ðp=p 0 Þ CO  ðp=p 0 Þ O 2  ðp=p 0 Þ ðp=p 0 Þ O 2  ðp=p 0 Þ CO 2  ðp=p 0 Þ H 2  ðp=p 0 Þ ðp=p 0 Þ O 2
                                                     H 2
                                                                                        N 2
                 2450           3.54023Eþ01      2.13590Eþ02     6.03322           5.3198E-02
                 2500           2.70287Eþ01      1.66502Eþ02     6.16017           5.8137E-02
                 2550           2.08601Eþ01      1.31054Eþ02     6.28255           6.3312E-02
                 2600           1.62640Eþ01      1.04097Eþ02     6.40045           6.8721E-02
                 2650           1.28029Eþ01      8.33978Eþ01     6.51398           7.4361E-02
                 2700           1.01701Eþ01      6.73591Eþ01     6.62323           8.0227E-02
                 2750           8.14828Eþ00      5.48240Eþ01     6.72829           8.6315E-02
                 2800           6.58152Eþ00      4.49468Eþ01     6.82925           9.2620E-02
                 2850           5.35700Eþ00      3.71035Eþ01     6.92618           9.9138E-02
                 2900           4.39219Eþ00      3.08294Eþ01     7.01914           1.0586E-01
                 2950           3.62613Eþ00      2.57753Eþ01     7.10821           1.1279E-01
                 3000           3.01343Eþ00      2.89620Eþ01     7.19343           1.1992E-01
                 3050           2.51997Eþ00      2.47329Eþ01     7.27483           1.2723E-01
                 3100           2.11989Eþ00      2.12369Eþ01     7.35247           1.3473E-01
                 3150           1.79349Eþ00      1.83304Eþ01     7.42636           1.4240E-01
                 3200           1.52559Eþ00      1.59006Eþ01     7.49651           1.5025E-01
                 3250           1.30444Eþ00      1.38587Eþ01     7.56295           1.5826E-01
                 3300           1.12089Eþ00      1.21342Eþ01     7.62566           1.6643E-01
                 3350           9.67731E-01      1.06707Eþ01     7.68464           1.7476E-01
                 3400           8.39304E-01      9.42300Eþ00     7.73988           1.8322E-01
                 3450           7.31095E-01      8.35460Eþ00     7.79136           1.9183E-01
                 3500           6.39503E-01      7.43587Eþ00     7.83905           2.0057E-01




               12.12 CONCLUDING REMARKS
               It has been shown that dissociation is an equilibrium process which seeks to minimise the Gibbs energy
               of the mixture. In a combustion process, dissociation always reduces the temperatures and pressures
               achieved (except for very rich mixtures, see Chapter 13), and hence reduces the work output and
               efficiency of a device.
                  The thermodynamic theory of dissociation has been rigorously developed, and it will be seen later
               that this applies to fuel cells also (see Chapter 21).
                  Dissociation usually tends to break product molecules into intermediate reactant molecules (e.g.
               CO 2 and H 2 O become CO, H 2 and O 2 ). However, the same theory shows that at high temperatures
               nitrogen and oxygen will combine to form oxides of nitrogen – a major pollutant.
                  A wide range of examples has been presented, covering most situations which will be encountered
               in respect of combustion.
   295   296   297   298   299   300   301   302   303   304   305