Page 130 - Advanced engineering mathematics
P. 130

110    CHAPTER 3  The Laplace Transform

                                 Put these into the circuit equations to get
                                                              t

                                                   40i 1 + 120  (i 1 (τ) − i 2 (τ))dτ
                                                             0
                                                   + 120(q 1 (0) − q 2 (0)) = 10,
                                                               t
                                                   60i 2 + 120  i 2 (τ)dτ + 120q 2 (0)
                                                             0
                                                          t

                                                   = 120   (i 1 (τ) − i 2 (τ))dτ + 120(q 1 (0) − q 2 (0)).
                                                         0
                                 Setting q 1 (0) = q 2 (0) = 0 in this system, we obtain
                                                           t
                                               40i 1 + 120  (i 1 (τ) − i 2 (τ))dτ = 10
                                                         0
                                                                  t              t
                                                      60i 2 + 120  i 2 (τ)dτ = 120  (i 1 (τ) − i 2 (τ))dτ.
                                                                0              0
                                 Apply the transform to obtain
                                                            120     120    10
                                                      40I 1 +   I 1 −  I 2 =
                                                             s       s     s
                                                                    120    120    120
                                                              60I 2 +  I 2 =  I 1 −  I 2 .
                                                                     s      s      s
                                 These can be written
                                                                             1
                                                               (s + 3)I 1 − 3I 2 =
                                                                             4
                                                               2I 1 − (s + 4)I 2 = 0.
                                 Solve these to obtain
                                                               s + 4      3  1     1   1
                                                    I 1 (s) =          =         +
                                                           4(s + 1)(s + 6)  20 s + 1  10 s + 6
                                 and
                                                                1         1  1     1  1
                                                    I 2 (s) =          =        −        .
                                                          2(s + 1)(s + 6)  10 s + 1  10 s + 6
                                 Then
                                                                    3      1
                                                                       −t
                                                              i 1 (t) =  e +  e  −6t
                                                                    20     10
                                 and
                                                                   1      1
                                                                     −t
                                                            i 2 (t) =  e −  e −6t .
                                                                  10     10
                        SECTION 3.6        PROBLEMS


                     In each of Problems 1 through 11, use the Laplace trans-  5. 3x − y = 2t, x + y − y = 0; x(0) = y(0) = 0



                     form to solve the initial value problem.       6. x + 4y − y = 0, x + 2y = e ; x(0) = y(0) = 0
                                                                                           −t



                                                                                             2
                      1. x − 2y = 1, x + y − x = 0; x(0) = y(0) = 0  7. x + 2x − y = 0, x + y + x = t ; x(0) = y(0) = 0













                      2. 2x − 3y + y = 0, x + y = t; x(0) = y(0) = 0  8. x + 4x − y = 0, x + y = t; x(0) = y(0) = 0







                      3. x + 2y − y = 1,2x + y = 0; x(0) = y(0) = 0  9. x + y + x − y = 0, x + 2y + x = 1; x(0) = y(0) = 0






                      4. x + y − x = cos(t), x + 2y = 0; x(0) = y(0) = 0  10. x + 2y − x = 0,4x + 3y + y =−6; x(0) = y(0) = 0


                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  14:14  THM/NEIL    Page-110        27410_03_ch03_p77-120
   125   126   127   128   129   130   131   132   133   134   135