Page 94 - Advanced engineering mathematics
P. 94

74     CHAPTER 2  Linear Second-Order Equations

                                 Then
                                                   y(x) = c 1 e  −ln(x) cos(3ln(x)) + c 2 e −ln(x)  sin(3ln(x))
                                                         1
                                                       =   (c 1 cos(3ln(x)) + c 2 sin(3ln(x))).
                                                         x
                                    As usual, we solve an initial value problem by finding the general solution of the differential
                                 equation and then using the initial conditions to determine the constants.



                         EXAMPLE 2.24
                                 Solve
                                                      2


                                                     x y − 5xy + 10y = 0; y(1) = 4, y (1) =−6.

                                 The Euler equation transforms to Y − 6y + 10Y = 0 with the general solution


                                                                   3t
                                                                              3t
                                                          Y(t) = c 1 e cos(t) + c 2 e sin(t)
                                 for x > 0. Then
                                                              3
                                                       y(x) = x (c 1 cos(ln(x)) + c 2 sin(ln(x))).
                                 Then
                                                                 y(1) = 4 = c 1 .
                                 Thus far,
                                                                             3
                                                               3
                                                       y(x) = 4x cos(ln(x)) + c 2 x sin(ln(x)).
                                 Compute
                                                              2
                                                                            2
                                                     y (x) =12x cos(ln(x)) − 4x sin(ln(x))

                                                                 2
                                                                               2
                                                            + 3c 2 x sin(ln(x)) + c 2 x cos(ln(x)).
                                 Then

                                                              y (1) = 12 + c 2 =−6,
                                 so c 2 =−18. The solution of the initial value problem is
                                                      y(x) = 4x cos(ln(x)) − 18x sin(ln(x)).
                                                              3
                                                                            3

                        SECTION 2.5        PROBLEMS


                                                                        2
                     In each of Problems 1 through 10, find the general solution.  8. x y − 5xy + 58y = 0


                                                                        2
                                                                    9. x y + 25xy + 144y = 0


                         2
                      1. x y + 2xy − 6y = 0


                                                                        2


                                                                   10. x y − 11xy + 35y = 0
                         2

                      2. x y + 3xy + y = 0

                         2


                      3. x y + xy + 4y = 0                         In each of Problems 11 through 16, solve the initial value
                                                                   problem.
                         2
                      4. x y + xy − 4y = 0


                                                                        2
                         2




                      5. x y + xy − 16y = 0                        11. x y + 5xy − 21y = 0; y(2) = 1, y (2) = 0

                                                                        2
                         2




                      6. x y + 3xy + 10y = 0                       12. x y − xy = 0; y(2) = 5, y (2) = 8

                         2
                                                                        2

                      7. x y + 6xy + 6y = 0                        13. x y − 3xy + 4y = 0; y(1) = 4, y (1) = 5




                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  14:12   THM/NEIL   Page-74         27410_02_ch02_p43-76
   89   90   91   92   93   94   95   96   97   98   99