Page 491 - Advanced thermodynamics for engineers
P. 491

20.6 THERMOELECTRICITY – THE APPLICATION OF IRREVERSIBLE             483




                  Substituting the above relations into Eqn (20.61) gives


                                           TdS                        J I
                               0
                              J ¼ J I TS þ     DT þ S DT    J I TS þ J I  D‘   S DT
                               Q
                                            dT                         l
                                                dS               2 D‘
                                       ¼     J I T  DT   þ      J I                        (20.67)
                                                dT                l
                                             |fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}  |ffl{zffl}
                                          Thomson heat extracted  Ohmic heat generated
                                          to maintain temperature
                  Now the Thomson heat was defined in Eqn (20.60) as
                                                   J Q ¼ sJ I DT                          (20.60a)
                  Thus
                                                          dS
                                                   s ¼ T                                   (20.68)
                                                          dT
                  For the thermocouple shown in Fig. 20.3, the difference in Thomson coefficients for the two
               wires is

                                                         d

                                            s X   s Y ¼ T   S   S   Y                      (20.69)
                                                             X
                                                         dT
               20.6.6 SUMMARY
               The equations for thermocouple phenomena for materials X and Y acting between temperature limits
               of T H and T C are as follows:
                  Seebeck Effect

                                                 T
                                                Z H

                  Seebeck coefficient     ε X;Y ¼   S   S   Y  dT                         (20.52a)

                                                     X
                                                T C
                  Peltier Effect
                  Peltier coefficient   p X;Y ¼ T S   S   Y                               (20.59a)


                                                  X
                  Thomson Effect


                  Thomson coefficient      s X   s Y ¼ T  d   S   S   Y                    (20.68)
                                                            X
                                                        dT
   486   487   488   489   490   491   492   493   494   495   496