Page 496 - Advanced thermodynamics for engineers
P. 496

488    CHAPTER 20 IRREVERSIBLE THERMODYNAMICS




                Thus
                                                     vm  J m vT
                                            Tq ¼ J m   þ    m                            (20.90)
                                                     vx   T   vx
                Hence the entropy production per unit volume, q, is given as
                                               J m vm       J m vT
                                        q ¼            þ     2  m   :                    (20.91)
                                                T vx        T   vx
                                              |fflfflfflffl{zfflfflfflffl}  |fflfflfflffl{zfflfflfflffl}
                                            Due to isothermal  Due to temperature
                                              diffusion      gradient


             20.7.3.2 Coupled diffusion and heat processes
             Such processes are also referred to as heat and mass transfer processes. Consider the system shown in
             Fig. 20.7. The equations governing the flow processes are the following:
                Heat

                                              J Q ¼ L 11 X 1 þ L 12 X 2                  (20.92)
                Diffusion (Mass Transfer)
                                              J m ¼ L 21 X 1 þ L 22 X 2                  (20.93)
                The thermodynamic forces have been previously defined. For the heat transfer process
                    1 dT                                                vðm=TÞ
             X 1 ¼      (see Section 20.6.2). For the mass transfer process X 2 ¼ T  (see Section 20.7.2).
                    T dx                                                  vx
                Thus, from Eqn (20.92)
                                                L 11 dT      dðm=TÞ
                                         J Q ¼          L 12 T                           (20.94)
                                                 T dx          dx
             and, from Eqn (20.93)

                                                L 21 dT      dðm=TÞ
                                         J m ¼          L 22 T                           (20.95)
                                                 T dx          dx
                Consider the steady state, i.e. when there is no flow between the two vessels and J m ¼ 0.
                Consider the effect on J Q , which can be calculated from Eqn (20.95)
                                              L 21 dT      dðm=TÞ
                                                    ¼ L 22 T                             (20.96)
                                              T dx           dx
             or
                                                         L 21 dT
                                              dðm=TÞ¼                                    (20.97)
                                                         L 22 T 2
                Now (m / T) ¼ f(T, p) ¼ (m / T)(T, p), and hence


                                              vðm=TÞ         vðm=TÞ
                                    dðm=TÞ¼            dT þ          dp:                 (20.98)
                                                vT             vp
                                                      p             T
   491   492   493   494   495   496   497   498   499   500   501