Page 497 - Advanced thermodynamics for engineers
P. 497

20.7 DIFFUSION AND HEAT TRANSFER          489




                  The specific enthalpy, h, can be related to this parameter by
                                                         vðm=TÞ
                                                h ¼ T 2         :                          (20.99)
                                                          vT
                  Rearranging Eqn (20.99) gives

                                                 vðm=TÞ       h
                                                         ¼      :                         (20.100)
                                                  vT    p     T 2

                            vðm=TÞ     1 vm
                  The term           ¼         , because T ¼ constant, and from the definition of chemical
                              vp       T  vp
                                   T          T
               potential, m, the term
                                               dm ¼ dg ¼ vdp þ sdT:                       (20.101)
                  Thus

                                                    vm
                                                          ¼ v:                            (20.102)
                                                    vp
                                                        T

                                 vðm=TÞ        vðm=TÞ
                  Substituting for        and           in Eqn (20.98) gives
                                   vT            vp
                                        p             T
                                                        h      v
                                             dðm=TÞ¼      dT þ   dp:                      (20.103)
                                                        T 2    T
                  Hence from Eqns (20.97) and (20.103)
                                               h      v dp    L 21 dT
                                                 dT þ     ¼                               (20.104)
                                               T 2     T      L 22 T 2
               giving

                                                          L 21  dT
                                               v dp ¼  h                                  (20.105)
                                                          L 22  T
                  If both vessels were at the same temperature then  dT  ¼ 0 and
                                                           dx
                                                            dðm=TÞ

                                              J Q    ¼ L 12 T                             (20.106)
                                                 T            dx
                                                           dðm=TÞ
                                               J m j ¼ L 22 T                             (20.107)
                                                 T
                                                             dx
                  Thus, as shown in Eqn (20.84)

                                                    J Q    L 12
                                                         ¼                                (20.108)
                                                    J m    L 22
                                                       T

                           J Q
                  The ratio     is the energy transported when there is no heat flow through thermal conduction.
                           J m
                               T

                                                 J Q    L 21
               Also from Onsager’s reciprocal relation  ¼  . If this ratio is denoted by the symbol U* then
                                                 J m    L 22
                                                     T
               Eqn (20.105) can be written, from Eqn (20.86)
   492   493   494   495   496   497   498   499   500   501   502