Page 501 - Advanced thermodynamics for engineers
P. 501

20.7 DIFFUSION AND HEAT TRANSFER          493




               and the net energy passing through the wall is given from Eqn (20.115) as
                                         _
                                          0
                                         E   E _     2k     1=2h  0 0 1=2  1=2  i
                                               ¼          p T     pT                      (20.119)
                                           A      pm
                  It is possible to substitute for the pressure of a monatomic gas by the expression
                                                   a  3     3=2  5=2
                                             p ¼ e  h  ð2pmÞ  b                           (20.120)
               and the temperature by
                                                    T ¼ 1=kb:                             (20.121)
                  Then Eqns (20.118) and (20.119) become:

                                         E _        3    h   a  3   a 0  0  3  i
                                           ¼ 4pmh     e  b     e  b                       (20.122)
                                         A
                                         _ n c      3   h   a  2   a 0  0  2 i
                                           ¼ 2pmh      e  b    e   b                      (20.123)
                                         A
                  If the state denoted by the primed symbols is constant, then differentiating gives


                                        _

                                       E
                                     d     ¼ 2pmh  3  b  3  a    6b  1 db   2da           (20.124)
                                                        e
                                       A

                                          _ n c      3     3  a
                                       d     ¼ 2pmh    b  e  ½ 2db   b daŠ                (20.125)
                                         A
                  Equations (20.124) and (20.125) may be written in the form
                                                _

                                                E
                                             d     ¼ L _ E;b  db þ L _ E;a da             (20.126)
                                                A
               and

                                                _ n c
                                             d     ¼ L _ n c;b  db þ L _ n c;a da         (20.127)
                                               A
               where
                                                ¼ 12pmb   4  3  a
                                                           h
                                                              e
                                            L _ E;b
                                                          3  3  a  )
                                                ¼ 4pmb     h  e
                                            L _ E;a
                                                               e
                                            L     ¼ 4pmb   3  3  a
                                                            h
                                              _ n c;b
                                                            h
                                            L    ¼ 2pmb    2  3  a :
                                                               e
                                              _ n c;a
                            ¼ L _ n c ;b , which is equivalent to the result given by Onsager, that L 12 ¼ L 21 , and has
                  Hence L _ E;a
               been proved from statistical thermodynamics.
   496   497   498   499   500   501   502   503   504   505   506