Page 141 - Advanced Mine Ventilation
P. 141

122                                               Advanced Mine Ventilation

         References


          [1] Thakur PC. Mass distribution, percent yield, non-settling size and aerodynamic shape
             factor of respirable coal dust particles [M.S. thesis]. The Penn State University; 1971.
             p. 133.
          [2] Fuchs NA. The mechanics of aerosols. Pergamon Press; 1964. p. 408.
          [3] Fuchs NA. The mechanics of aerosols. Pergamon Press; 1964. p. 28e9.
          [4] Cunningham E. Proceedings of Royal Society 1910;83 A:357.
          [5] Millikam R. Physics Review 1923;21:217.
          [6] Timbrell V. The terminal velocity and size of airborne dust particles. British Journal of
             Applied Physics 1954;(Suppl. 3):86e9.
          [7] Watson J. British Journal of Industrial Medicine 1953;10:93.
          [8] Sawyer KF, Walton WH. The conifuge e a size separating sampling device for airborne
             particles. Journal of Science Instruments 1950;27:272.
          [9] Einstein A. Annalen der Physik 1905;17:549.
         [10] Herdan G. Small particle statistics. Butterworths Scientific Publication; 1960. p. 80e2.
         [11] Rosin P, Rammler E. Journal of the Institute of Fuel 1933;7:29.
         [12] Thakur PC. Mass distribution of respirable dust particles from U.S. coals. Colliery
             Guardian 1974;227(F):236e9.
         [13] Andreasen AHM, Berg S. Angew Z Chemistry 1935;48:203.
         [14] Kaya E, Hogg R, Mutmansky JM. Evaluation of procedures for production of dust samples
             for biomedical research. Applied Occupational and Environmental Hygiene July 1996;
             11(7).
         [15] Tomb TF, et al. Analysis of quartz exposure data from underground and surface coal mine
             operations. Applied Occupational and Environmental Hygiene 1995;10:1019e26.
         [16] Walton, et al. The effect of quartz and non-coal dusts in coal workers’ pneumoconiosis. In:
             Walton WH, editor. Inhaled particles, vol. IV. England: Old Woking, Unwin Brothers;
             1977. p. 669e89.
         [17] Balsaitis PB, Wallace WE. The structure of silica surfaces in relation to cytotoxicity. In:
             Castranova, editor. Silica and silica induced lung disease. CRC Press; 1995. p. 79e89.
         [18] Conner JR, et al. Mineral dust promotes alterations in ferritin isoforms and oxidative
             damage to protein in rats and human alveolar micro phases. Applied Occupational and
             Environmental Hygiene 1996;II(7):969e72.
         [19] Chen LC, et al. The role of ferrous sulfate in coal dust induced lung injury. Applied
             Occupational and Environmental Hygiene 1996;II(7):973e80.
         [20] Vallyathan V, et al. Freshly fractured quartz inhalation leads to enhanced lung injury and
             inflammation. American Journal of Respiratory and Critical Care Medicine 1995. 152 pp.
         [21] Thakur PC. How to eliminate coal workers’ pneumoconiosis. In: Proceedings of the 27th
             international conference on safety in mines. New Delhi, India: Research Institutes; 1997.
             p. 217e22.
   136   137   138   139   140   141   142   143   144   145   146