Page 118 - Advances in Biomechanics and Tissue Regeneration
P. 118
114 6. REVIEW OF THE ESSENTIAL ROLES OF SMCS IN ATAA BIOMECHANICS
[118] E. Crosas-Molist, T. Meirelles, J. López-Luque, C. Serra-Peinado, J. Selva, L. Caja, D. Gorbenko del Blanco, J.J. Uriarte, E. Bertran,
Y. Mendizabal, V. Hernandez, C. Garca-Calero, O. Busnadiego, E. Condom, M. Toral, D. Castell, A. Forteza, D. Navajas, E. Sarri,
F. Rodróguez-Pascual, H.C. Dietz, I. Fabregat, G. Egea, Vascular smooth muscle cell phenotypic change in patients with Marfan syndrome
significance, Arterioscler. Thromb. Vasc. Biol. 35 (4) (2015) 960–972.
[119] R.D. Hubmayr, S.A. Shore, J.J. Fredberg, E. Planus, R.A. Panettieri, W. Moller, J. Heyder, N. Wang, Pharmacological activation changes stiff-
ness of cultured human airway smooth muscle cells, Am. J. Physiol. Cell Physiol. 271 (5) (1996) C1660–C1668.
[120] S.S. An, R.E. Laudadio, J. Lai, R.A. Rogers, J.J. Fredberg, Stiffness changes in cultured airway smooth muscle cells, Am. J. Physiol. Cell Physiol.
283 (3) (2002) C792–C801.
[121] J.H.N. Lindeman, B.A. Ashcroft, J.-W.M. Beenakker, M. van Es, N.B.R. Koekkoek, F.A. Prins, J.F. Tielemans, H. Abdul-Hussien, R.A. Bank, T.
H. Oosterkamp, Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms
in Marfan syndrome, Proc. Natl Acad. Sci. USA 107 (2) (2010) 862–865.
[122] A. Rachev, K. Hayashi, Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann.
Biomed. Eng. 27 (4) (1999) 459–468.
[123] T. Matsumoto, M. Tsuchida, M. Sato, Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation,
Am. J. Phys. Anthropol. 271 (4 Pt 2) H1711–H1716.
[124] K.K. Parker, A.L. Brock, C. Brangwynne, R.J. Mannix, N. Wang, E. Ostuni, N.A. Geisse, J.C. Adams, G.M. Whitesides, D.E. Ingber, Directional
control of lamellipodia extension by constraining cell shape and orienting cell tractional forces, FASEB J. 16 (10) (2002) 1195–1204.
[125] A. Saez, M. Ghibaudo, B. Ladoux, A. Buguin, P. Silberzan, Les cellules vivantes r epondent á la rigidit e de leur substrat, Images de la Physique
(2007) 94–100.
[126] W.W. Ahmed, E. Fodor, T. Betz, Active cell mechanics: measurement and theory, Biochim. Biophys. Acta Mol. Cell Res. 1853 (11, Part B) (2015)
3083–3094.
[127] A. Livne, B. Geiger, The inner workings of stress fibers: from contractile machinery to focal adhesions and back, J. Cell Sci. (7) (2016) 1293–1304.
[128] C. Petit, E. Planus, F. Marchi, I.A. Ivan, Caract erisation combin ee par Microscopie á Force Atomique en mode PeakForce et par Microscopie
Confocale á Fluorescence de la cellule animale isol ee fix ee sur un micro motif adh esif á destination de futurs Travaux Pratiques de nanobio-
physique, 2017 (non publi e).
[129] S.K. Karnik, A critical role for elastin signaling in vascular morphogenesis and disease, Development 130 (2) (2003) 411–423.
[130] T. Tran, K.D. McNeill, W.T. Gerthoffer, H. Unruh, A.J. Halayko, Endogenous laminin is required for human airway smooth muscle cell mat-
uration, Respir. Res. 7 (2006) 117.
[131] K. Hayashi, T. Naiki, Adaptation and remodeling of vascular wall; biomechanical response to hypertension, J. Mech. Behav. Biomed. Mater.
2 (1) (2009) 3–19.
[132] K. Riches, T.G. Angelini, G.S. Mudhar, J. Kaye, E. Clark, M.A. Bailey, S. Sohrabi, S. Korossis, P.G. Walker, D.J.A. Scott, K.E. Porter, Exploring
smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm, J. Transl. Med. 11 (2013) 208.
[133] S. Anderson, L. DiCesare, I. Tan, T. Leung, N. SundarRaj, Rho-mediated assembly of stress fibers is differentially regulated in corneal fibro-
blasts and myofibroblasts, Exp. Cell Res. 298 (2) (2004) 574–583.
[134] M.S. Kolodney, R.B. Wysolmerski, Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study, J. Cell Biol.
117 (1) (1992) 73–82.
I. BIOMECHANICS