Page 117 - Advances in Biomechanics and Tissue Regeneration
P. 117
REFERENCES 113
[81] K. Kanda, T. Matsuda, Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional
collagen lattices, Cell Transplant. 3 (6) (1994) 481–492.
[82] M.K. O’Connell, S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R.L. Dalman, C.K. Zarins, W. Denk, C.A. Taylor, The three-dimensional
micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal electron microscopy imaging, Matrix Biol. 27 (3) (2008)
171–181.
[83] J.M. Clark, S. Glagov, Transmural organization of the arterial media. The lamellar unit revisited, Arteriosclerosis (Dallas, TX) 5 (1) (1985) 19–34.
[84] M.A. Gaballa, C.T. Jacob, T.E. Raya, J. Liu, B. Simon, S. Goldman, Large artery remodeling during aging: biaxial passive and active stiffness,
Hypertension (Dallas, TX: 1979) 32 (3) (1998) 437–443.
[85] K.P. Dingemans, P. Teeling, J.H. Lagendijk, A.E. Becker, Extracellular matrix of the human aortic media: an ultrastructural histochemical and
immunohistochemical study of the adult aortic media, Anat. Rec. 258 (1) (2000) 1–14.
[86] M.K. Keech, Electron microscope study of the normal rat aorta, J. Biophys. Biochem. Cytol. 7 (1960) 533–538.
[87] M.J. Osborne-Pellegrin, Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat, J. Anat. 125 (Pt 3) (1978) 641–652.
[88] E.C. Davis, Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization, Lab. Invest. J. Tech.
Methods Pathol. 68 (1) (1993) 89–99.
[89] Z. Tonar, P. Kochova, R. Cimrman, J. Perktold, K. Witter, Segmental differences in the orientation of smooth muscle cells in the tunica media of
porcine aortae, Biomech. Model. Mechanobiol. 14 (2) (2015) 315–332.
[90] G.A. Holzapfel, T.C. Gasser, M. Stadler, A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite
element analysis, Eur. J. Mech. A. Solids 21 (3) (2002) 441–463.
[91] G.A. Holzapfel, T.C. Gasser, A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and
applications, Comput. Methods Appl. Mech. Eng. 190 (34) (2001) 4379–4403.
[92] H. Chen, T. Luo, X. Zhao, X. Lu, Y. Huo, G.S. Kassab, Microstructural constitutive model of active coronary media, Biomaterials 34 (31) (2013)
7575–7583.
[93] K. Hayashi, A. Kamiya, K. Ono, Biomechanics: Functional Adaption and Remodeling, Springer Science and Business Media, New York, NY,
2012.
[94] D. Balas, P. Philip, Tissus musculaires, (2002). http://www.db-gersite.com/HISTOLOGIE/HISTGENE/histgen1/histgen6/histgen6.htm.
Accessed 2 November 2017.
[95] F.S. Fay, C.M. Delise, Contraction of isolated smooth muscle cells—structural changes, Proc. Natl Acad. Sci. USA 70 (3) (1973) 641–645.
[96] J.M. Goffin, P. Pittet, G. Csucs, J.W. Lussi, J.-J. Meister, B. Hinz, Focal adhesion size controls tension-dependent recruitment of α-smooth muscle
actin to stress fibers, J. Cell Biol. 172 (2) (2006) 259–268.
[97] O. Skalli, P. Ropraz, A. Trzeciak, G. Benzonana, D. Gillessen, G. Gabbiani, A monoclonal antibody against alpha-smooth muscle actin: a new
probe for smooth muscle differentiation, J. Cell Biol. 103 (6) (1986) 2787–2796.
[98] P. Lacolley, V. Regnault, A. Nicoletti, Z. Li, J.-B. Michel, The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple
roles, Cardiovasc. Res. 95 (2) (2012) 194–204.
[99] M.J. Taggart, Smooth muscle excitation–contraction coupling: a role for caveolae and caveolins? Physiology 16 (2) (2001) 61–65.
[100] H. Karaki, N. Urakawa, P. Kutsky, Potassium-induced contraction in smooth muscle, Nihon Heikatsukin Gakkai Zasshi 20 (6) (1984) 427–444.
[101] L. Balasubramanian, C.-M. Lo, J.S.K. Sham, K.-P. Yip, Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-
mediated mechanotransduction, Am. J. Physiol. Cell Physiol. 304 (4) (2013) C382–C391.
[102] S. De Moudt, A. Leloup, C. Van Hove, G. De Meyer, P. Fransen, Isometric stretch alters vascular reactivity of mouse aortic segments, Front.
Physiol. 8 (2017) 157.
[103] M.J. Berridge, A. Galione, Cytosolic calcium oscillators, FASEB J. 2 (15) (1988) 3074–3082.
[104] S.C. Murtada, A. Arner, G.A. Holzapfel, Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament
overlap, J. Theor. Biol. 297 (2012) 176–186.
[105] S. Malekzadeh, R.A. Fraga-Silva, B. Trachet, F. Montecucco, F. Mach, N. Stergiopulos, Role of the renin-angiotensin system on abdominal aortic
aneurysms, Eur. J. Clin. Invest. 43 (12) (2013) 1328–1338.
[106] C.M. Hai, R.A. Murphy, Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am. J. Physiol. 254 (1988) C99–C106.
[107] H.E. Huxley, Electron microscope studies of the organisation of the filaments in striated muscle, Biochim. Biophys. Acta 12 (1) (1953) 387–394.
[108] P.F. Dillon, M.O. Aksoy, S.P. Driska, R.A. Murphy, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science
(New York, NY) 211 (4481) (1981) 495–497.
[109] T. Tan, R. De Vita, A structural constitutive model for smooth muscle contraction in biological tissues, Int. J. Nonlinear Mech. 75 (suppl. C)
(2015) 46–53.
[110] M.A. Zulliger, A. Rachev, N. Stergiopulos, A constitutive formulation of arterial mechanics including vascular smooth muscle tone, Am. J.
Physiol. Heart Circ. Physiol. 287 (3) (2004) H1335–H1343.
[111] P. Challande, M. Briet, Y. B ezie, P. Boutouyrie, M ethodes d’exploration fonctionnelle des gros troncs art eriels, in: Biologie et Pathologie du
Coeur et des VaisseauxJohn Libbery Eurotext, Paris, 2007, pp. 427–433.
[112] I.M. Tolic-Norrelykke, J.P. Butler, J. Chen, N. Wang, Spatial and temporal traction response in human airway smooth muscle cells, Am. J.
Physiol. Cell Physiol. 283 (4) (2002) C1254–C1266.
[113] A. Hall, P. Chan, K. Sheets, M. Apperson, C. Delaughter, T.G. Gleason, J.A. Phillippi, A. Nain, Nanonet force microscopy for measuring forces
in single smooth muscle cells of the human aorta, Mol. Biol. Cell 28 (14) (2017) 1894–1900.
[114] J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Cells lying on a bed of microneedles: an approach to isolate mechanical force,
Proc. Natl Acad. Sci. USA 100 (4) (2003) 1484–1489.
[115] Y. Zhang, S.S. Ng, Y. Wang, H. Feng, W.N. Chen, M.B. Chan-Park, C. Li, V. Chan, Collective cell traction force analysis on aligned smooth
muscle cell sheet between three-dimensional microwalls, Interface Focus 4 (2) (2014) 20130056.
[116] B.A. Smith, B. Tolloczko, J.G. Martin, P. Gr€ utter, Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force
microscopy: stiffening induced by contractile agonist, Biophys. J. 88 (4) (2005) 2994–3007.
[117] M. Laurent, S. H enon, E. Planus, R. Fodil, M. Balland, D. Isabey, F. Gallet, Assessment of mechanical properties of adherent living cells by bead
micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers, J. Biomech. Eng. 124 (4) (2002) 408–421.
I. BIOMECHANICS