Page 116 - Advances in Biomechanics and Tissue Regeneration
P. 116

112                       6. REVIEW OF THE ESSENTIAL ROLES OF SMCS IN ATAA BIOMECHANICS

            [44] A.P. Somlyo, A.V. Somlyo, Ca 2+  sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phos-
                phatase, Physiol. Rev. 83 (4) (2003) 1325–1358.
            [45] J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R.A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling, Nat.
                Rev. Mol. Cell Biol. 3 (5) (2002) 349–363.
            [46] M.J. Berridge, Smooth muscle cell calcium activation mechanisms, J. Physiol. 586 (Pt 21) (2008) 5047–5061.
            [47] M.J. Davis, J.A. Donovitz, J.D. Hood, Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells, Am. J. Physiol.
                Cell Physiol. 262 (4) (1992) C1083–C1088.
            [48] D.C. Hill-Eubanks, M.E. Werner, T.J. Heppner, M.T. Nelson, Calcium signaling in smooth muscle, Cold Spring Harb. Perspect. Biol. 3 (9) (2011)
                a004549.
            [49] U. Malmqvist, A. Arner, Kinetics of contraction in depolarized smooth muscle from guinea-pig taenia coli after photodestruction of nifedipine,
                J. Physiol. 519 (Pt 1) (1999) 213–221.
            [50] L.A. Schildmeyer, R. Braun, G. Taffet, M. Debiasi, A.E. Burns, A. Bradley, R.J. Schwartz, Impaired vascular contractility and blood pressure
                homeostasis in the smooth muscle alpha-actin null mouse, FASEB J. 14 (14) (2000) 2213–2220.
            [51] A.P. Somlyo, A.V. Somlyo, Signal transduction and regulation in smooth muscle, Nature 372 (6503) (1994) 231.
            [52] Z. Hong, K.J. Reeves, Z. Sun, Z. Li, N.J. Brown, G.A. Meininger, Vascular smooth muscle cell stiffness and adhesion to collagen I modified by
                vasoactive agonists, PLoS ONE 10 (3) (2015) e0119533.
            [53] K. Tran-Lundmark, P. Tannenberg, B.H. Rauch, J. Ekstrand, P.-K. Tran, U. Hedin, M.G. Kinsella, Perlecan heparan sulfate is required for the
                inhibition of smooth muscle cell proliferation by all-trans-retinoic acid, J. Cell. Physiol. 230 (2) (2015) 482–487.
            [54] B. Lilly, We have contact: endothelial cell-smooth muscle cell interactions, Physiology 29 (4) (2014) 234–241.
            [55] F.V. Brozovich, C.J. Nicholson, C.V. Degen, Y.Z. Gao, M. Aggarwal, K.G. Morgan, Mechanisms of vascular smooth muscle contraction and the
                basis for pharmacologic treatment of smooth muscle disorders, Pharmacol. Rev. 68 (2) (2016) 476–532.
            [56] G.K. Owens, M.S. Kumar, B.R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease,
                Physiol. Rev. 84 (3) (2004) 767–801.
            [57] J.E. Wagenseil, R.P. Mecham, Vascular extracellular matrix and arterial mechanics, Physiol. Rev. 89 (3) (2009) 957–989.
            [58] C.L. Papke, Y. Yamashiro, H. Yanagisawa, MMP17/MT4-MMP and thoracic aortic aneurysms: OPNing new potential for effective treatment,
                Circ. Res. 117 (2) (2015) 109–112.
            [59] C.M. Kielty, S.P. Whittaker, M.E. Grant, C.A. Shuttleworth, Attachment of human vascular smooth muscles cells to intact microfibrillar assem-
                blies of collagen VI and fibrillin, J. Cell Sci. 103 (2) (1992) 445–451.
            [60] Y. Akgul, M. Mahendroo, Cervical changes accompanying birth, in: B.A. Croy, A.T. Yamada, F.J. DeMayo, S.L. Adamson (Eds.), The Guide to
                Investigation of Mouse Pregnancy, Academic Press, Boston, MA, 2014, pp. 391–401.
            [61] G. Finet, A. Tabib, L’arth  eroscl  erose, in: CardiologiePresses Universitaires de Lyon, Lyon, 1999, pp. 491–499.
            [62] J. Rapp, Oscillatory Flow Effects on Rat Aortic Smooth Muscle Cells, diplom.de, 1997. ISBN 978-3-8324-0048-4.
            [63] H. Wolinsky, S. Glagov, A lamellar unit of aortic medial structure and function in mammals, Circ. Res. 20 (1) (1967) 99–111.
            [64] A. Brunon, K. Bruy  ere-Garnier, M. Coret, Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation
                tests, J. Mech. Behav. Biomed. Mater. 4 (8) (2011) 1572–1581.
            [65] J.-H. Kim, S. Avril, A. Duprey, J.-P. Favre, Experimental characterization of rupture in human aortic aneurysms using a full-field measurement
                technique, Biomech. Model. Mechanobiol. 11 (6) (2012) 841–853.
            [66] A. Romo, P. Badel, A. Duprey, J.P. Favre, S. Avril, In vitro analysis of localized aneurysm rupture, J. Biomech. 47 (3) (2014) 607–616.
            [67] C. Cavinato, C. Helfenstein-Didier, T. Olivier, S.R. du Roscoat, N. Laroche, P. Badel, Biaxial loading of arterial tissues with 3D in situ obser-
                vations of adventitia fibrous microstructure: a method coupling multi-photon confocal microscopy and bulge inflation test, J. Mech. Behav.
                Biomed. Mater. 74 (2017) 488–498.
            [68] C. Bellini, J. Feruzzi, S. Roccabianca, E.S. Di Martino, J.D. Humphrey, A microstructurally motivated model of arterial wall mechanics with
                mechanobiological implications, Ann. Biomed. Eng. 42 (3) (2014) 488–502.
            [69] J.D. Humphrey, C.A. Taylor, Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational
                models, Annu. Rev. Biomed. Eng. 10 (2008) 221–246.
            [70] L. Cardamone, A. Valentin, J.F. Eberth, J.D. Humphrey, Origin of axial prestretch and residual stress in arteries, Biomech. Model. Mechanobiol.
                8 (6) (2009) 431–446.
            [71] K.L. Dorrington, N.G. McCrum, Elastin as a rubber, Biopolymers 16 (6) (1977) 1201–1222.
            [72] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material
                models, J. Elast. Phys. Sci. Solids 61 (1–3) (2000) 1–48.
            [73] F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, J.F. Rodriguez, A pull-back algorithm to determine the unloaded vascular geometry in aniso-
                tropic hyperelastic AAA passive mechanics, Ann. Biomed. Eng. 41 (4) (2013) 694–708.
            [74] J.F. Rodriguez, C. Ruiz, M. Doblar  e, G.A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry,
                and material anisotropy, J. Biomech. Eng. 130 (2) (2008) 21–23.
            [75] M.R. Bersi, C. Bellini, P. Di Achille, J.D. Humphrey, K. Genovese, S. Avril, Novel methodology for characterizing regional variations in the
                material properties of murine aortas, J. Biomech. Eng. 138 (7) (2016) 0710051–07100515.
            [76] T. Fujiwara, Y. Uehara, The cytoarchitecture of the medial layer in rat thoracic aorta: a scanning electron-microscopic study, Cell Tissue Res.
                270 (1) (1992) 165–172.
            [77] R.P. Mecham, S.M. Schwartz, Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix (Biology of Extra-
                cellular Matrix Series), Academic Press, Boston, MA, 1995.
            [78] B.G. Miller, V.H. Gattone, J.M. Overhage, H.G. Bohlen, A.P. Evan, Morphological evaluation of vascular smooth muscle cell: length and width
                from a single scanning electron micrograph of microvessels, Anat. Rec. 216 (1) (1986) 95–103.
            [79] G. Bao, S. Suresh, Cell and molecular mechanics of biological materials, Nat. Mater. 2 (11) (2003) 715–725.
            [80] P.C. Dartsch, H. H€ ammerle, Orientation response of arterial smooth muscle cells to mechanical stimulation, Eur. J. Cell Biol. 41 (2) (1986)
                339–346.




                                                       I. BIOMECHANICS
   111   112   113   114   115   116   117   118   119   120   121