Page 116 - Advances in Biomechanics and Tissue Regeneration
P. 116
112 6. REVIEW OF THE ESSENTIAL ROLES OF SMCS IN ATAA BIOMECHANICS
[44] A.P. Somlyo, A.V. Somlyo, Ca 2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phos-
phatase, Physiol. Rev. 83 (4) (2003) 1325–1358.
[45] J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R.A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling, Nat.
Rev. Mol. Cell Biol. 3 (5) (2002) 349–363.
[46] M.J. Berridge, Smooth muscle cell calcium activation mechanisms, J. Physiol. 586 (Pt 21) (2008) 5047–5061.
[47] M.J. Davis, J.A. Donovitz, J.D. Hood, Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells, Am. J. Physiol.
Cell Physiol. 262 (4) (1992) C1083–C1088.
[48] D.C. Hill-Eubanks, M.E. Werner, T.J. Heppner, M.T. Nelson, Calcium signaling in smooth muscle, Cold Spring Harb. Perspect. Biol. 3 (9) (2011)
a004549.
[49] U. Malmqvist, A. Arner, Kinetics of contraction in depolarized smooth muscle from guinea-pig taenia coli after photodestruction of nifedipine,
J. Physiol. 519 (Pt 1) (1999) 213–221.
[50] L.A. Schildmeyer, R. Braun, G. Taffet, M. Debiasi, A.E. Burns, A. Bradley, R.J. Schwartz, Impaired vascular contractility and blood pressure
homeostasis in the smooth muscle alpha-actin null mouse, FASEB J. 14 (14) (2000) 2213–2220.
[51] A.P. Somlyo, A.V. Somlyo, Signal transduction and regulation in smooth muscle, Nature 372 (6503) (1994) 231.
[52] Z. Hong, K.J. Reeves, Z. Sun, Z. Li, N.J. Brown, G.A. Meininger, Vascular smooth muscle cell stiffness and adhesion to collagen I modified by
vasoactive agonists, PLoS ONE 10 (3) (2015) e0119533.
[53] K. Tran-Lundmark, P. Tannenberg, B.H. Rauch, J. Ekstrand, P.-K. Tran, U. Hedin, M.G. Kinsella, Perlecan heparan sulfate is required for the
inhibition of smooth muscle cell proliferation by all-trans-retinoic acid, J. Cell. Physiol. 230 (2) (2015) 482–487.
[54] B. Lilly, We have contact: endothelial cell-smooth muscle cell interactions, Physiology 29 (4) (2014) 234–241.
[55] F.V. Brozovich, C.J. Nicholson, C.V. Degen, Y.Z. Gao, M. Aggarwal, K.G. Morgan, Mechanisms of vascular smooth muscle contraction and the
basis for pharmacologic treatment of smooth muscle disorders, Pharmacol. Rev. 68 (2) (2016) 476–532.
[56] G.K. Owens, M.S. Kumar, B.R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease,
Physiol. Rev. 84 (3) (2004) 767–801.
[57] J.E. Wagenseil, R.P. Mecham, Vascular extracellular matrix and arterial mechanics, Physiol. Rev. 89 (3) (2009) 957–989.
[58] C.L. Papke, Y. Yamashiro, H. Yanagisawa, MMP17/MT4-MMP and thoracic aortic aneurysms: OPNing new potential for effective treatment,
Circ. Res. 117 (2) (2015) 109–112.
[59] C.M. Kielty, S.P. Whittaker, M.E. Grant, C.A. Shuttleworth, Attachment of human vascular smooth muscles cells to intact microfibrillar assem-
blies of collagen VI and fibrillin, J. Cell Sci. 103 (2) (1992) 445–451.
[60] Y. Akgul, M. Mahendroo, Cervical changes accompanying birth, in: B.A. Croy, A.T. Yamada, F.J. DeMayo, S.L. Adamson (Eds.), The Guide to
Investigation of Mouse Pregnancy, Academic Press, Boston, MA, 2014, pp. 391–401.
[61] G. Finet, A. Tabib, L’arth eroscl erose, in: CardiologiePresses Universitaires de Lyon, Lyon, 1999, pp. 491–499.
[62] J. Rapp, Oscillatory Flow Effects on Rat Aortic Smooth Muscle Cells, diplom.de, 1997. ISBN 978-3-8324-0048-4.
[63] H. Wolinsky, S. Glagov, A lamellar unit of aortic medial structure and function in mammals, Circ. Res. 20 (1) (1967) 99–111.
[64] A. Brunon, K. Bruy ere-Garnier, M. Coret, Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation
tests, J. Mech. Behav. Biomed. Mater. 4 (8) (2011) 1572–1581.
[65] J.-H. Kim, S. Avril, A. Duprey, J.-P. Favre, Experimental characterization of rupture in human aortic aneurysms using a full-field measurement
technique, Biomech. Model. Mechanobiol. 11 (6) (2012) 841–853.
[66] A. Romo, P. Badel, A. Duprey, J.P. Favre, S. Avril, In vitro analysis of localized aneurysm rupture, J. Biomech. 47 (3) (2014) 607–616.
[67] C. Cavinato, C. Helfenstein-Didier, T. Olivier, S.R. du Roscoat, N. Laroche, P. Badel, Biaxial loading of arterial tissues with 3D in situ obser-
vations of adventitia fibrous microstructure: a method coupling multi-photon confocal microscopy and bulge inflation test, J. Mech. Behav.
Biomed. Mater. 74 (2017) 488–498.
[68] C. Bellini, J. Feruzzi, S. Roccabianca, E.S. Di Martino, J.D. Humphrey, A microstructurally motivated model of arterial wall mechanics with
mechanobiological implications, Ann. Biomed. Eng. 42 (3) (2014) 488–502.
[69] J.D. Humphrey, C.A. Taylor, Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational
models, Annu. Rev. Biomed. Eng. 10 (2008) 221–246.
[70] L. Cardamone, A. Valentin, J.F. Eberth, J.D. Humphrey, Origin of axial prestretch and residual stress in arteries, Biomech. Model. Mechanobiol.
8 (6) (2009) 431–446.
[71] K.L. Dorrington, N.G. McCrum, Elastin as a rubber, Biopolymers 16 (6) (1977) 1201–1222.
[72] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material
models, J. Elast. Phys. Sci. Solids 61 (1–3) (2000) 1–48.
[73] F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, J.F. Rodriguez, A pull-back algorithm to determine the unloaded vascular geometry in aniso-
tropic hyperelastic AAA passive mechanics, Ann. Biomed. Eng. 41 (4) (2013) 694–708.
[74] J.F. Rodriguez, C. Ruiz, M. Doblar e, G.A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry,
and material anisotropy, J. Biomech. Eng. 130 (2) (2008) 21–23.
[75] M.R. Bersi, C. Bellini, P. Di Achille, J.D. Humphrey, K. Genovese, S. Avril, Novel methodology for characterizing regional variations in the
material properties of murine aortas, J. Biomech. Eng. 138 (7) (2016) 0710051–07100515.
[76] T. Fujiwara, Y. Uehara, The cytoarchitecture of the medial layer in rat thoracic aorta: a scanning electron-microscopic study, Cell Tissue Res.
270 (1) (1992) 165–172.
[77] R.P. Mecham, S.M. Schwartz, Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix (Biology of Extra-
cellular Matrix Series), Academic Press, Boston, MA, 1995.
[78] B.G. Miller, V.H. Gattone, J.M. Overhage, H.G. Bohlen, A.P. Evan, Morphological evaluation of vascular smooth muscle cell: length and width
from a single scanning electron micrograph of microvessels, Anat. Rec. 216 (1) (1986) 95–103.
[79] G. Bao, S. Suresh, Cell and molecular mechanics of biological materials, Nat. Mater. 2 (11) (2003) 715–725.
[80] P.C. Dartsch, H. H€ ammerle, Orientation response of arterial smooth muscle cells to mechanical stimulation, Eur. J. Cell Biol. 41 (2) (1986)
339–346.
I. BIOMECHANICS