Page 115 - Advances in Biomechanics and Tissue Regeneration
P. 115

REFERENCES                                         111

            [11] H. Sawada, D.L. Rateri, J.J. Moorleghen, M.W. Majesky, A. Daugherty, Smooth muscle cells derived from second heart field and cardiac neural
                crest reside in spatially distinct domains in the media of the ascending aorta—brief report, Arterioscler. Thromb. Vasc. Biol. 37 (9) (2017)
                1722–1726.
            [12] D. Tremblay, R. Cartier, R. Mongrain, R.L. Leask, Regional dependency of the vascular smooth muscle cell contribution to the mechanical
                properties of the pig ascending aortic tissue, J. Biomech. 43 (12) (2010) 2448–2451.
            [13] N. Choudhury, O. Bouchot, L. Rouleau, D. Tremblay, R. Cartier, J. Butany, R. Mongrain, R.L. Leask, Local mechanical and structural properties
                of healthy and diseased human ascending aorta tissue, Cardiovasc. Pathol. 18 (2) (2009) 83–91.
            [14] S. Pasta, A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T.G. Gleason, D.A. Vorp, Difference in hemodynamic and wall stress of ascending tho-
                racic aortic aneurysms with bicuspid and tricuspid aortic valve, J. Biomech. 46 (10) (2013) 1729–1738.
            [15] J.-B. Michel, G. Jondeau, D.M. Millewicz, From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the
                ascending aorta, Cardiovasc. Res. 114 (4) (2018) 578–589.
            [16] A.J. Barker, M. Markl, J. B€ urk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, F. von Knobelsdorff-Brenkenhoff, Bicuspid aortic valve is asso-
                ciated with altered wall shear stress in the ascending aorta, Circ. Cardiovasc. Imaging 5 (4) (2012) 457–466.
            [17] S. Schnell, D.A. Smith, A.J. Barker, P. Entezari, A.R. Honarmand, M.L. Carr, S.C. Malaisrie, P.M. McCarthy, J. Collins, J.C. Carr,
                M. Markl, Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns, Eur. Heart J. Cardiovasc. Imaging 17 (11)
                (2016) 1239–1247.
            [18] F.J. Miller, W.J. Sharp, X. Fang, L.W. Oberley, T.D. Oberley, N.L. Weintraub, Oxidative stress in human abdominal aortic aneurysms: a poten-
                tial mediator of aneurysmal remodeling, Arterioscler. Thromb. Vasc. Biol. 22 (4) (2002) 560–565.
            [19] M.M. Dua, R.L. Dalman, Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm patho-
                physiology, Vascul. Pharmacol. 53 (1–2) (2010) 11–21.
            [20] A.J. Brownstein, B.A. Ziganshin, H. Kuivaniemi, S.C. Body, A.E. Bale, J.A. Elefteriades, Genes associated with thoracic aortic aneurysm and
                dissection: an update and clinical implications, Aorta (Stamford, CN) 5 (1) (2017) 11–20.
            [21] J.D. Humphrey, M.A. Schwartz, G. Tellides, D.M. Milewicz, Role of mechanotransduction in vascular biology: focus on thoracic aortic aneu-
                rysms and dissections, Circ. Res. 116 (8) (2015) 1448–1461.
            [22] D.-C. Guo, H. Pannu, V. Tran-Fadulu, C.L. Papke, R.K. Yu, N. Avidan, S. Bourgeois, A.L. Estrera, H.J. Safi, E. Sparks, D. Amor, L. Ades,
                V. McConnell, C.E. Willoughby, D. Abuelo, M. Willing, R.A. Lewis, D.H. Kim, S. Scherer, P.P. Tung, C. Ahn, L.M. Buja, C.
                S. Raman, S.S. Shete, D.M. Milewicz, Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections,
                Nat. Genet. 39 (12) (2007) 1488–1493.
            [23] S.-Q. Kuang, C.S. Kwartler, K.L. Byanova, J. Pham, L. Gong, S.K. Prakash, J. Huang, K.E. Kamm, J.T. Stull, H.L. Sweeney, D.M. Milewicz, Rare,
                non-synonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and
                phenotype of smooth muscle cells, Circ. Res. 110 (11) (2012) 1411–1422.
            [24] J. Chen, H. Li, N. Sundarraj, J.H.-C. Wang, Alpha-smooth muscle actin expression enhances cell traction force, Cell Motil. Cytoskeleton 64 (4)
                (2007) 248–257.
            [25] E. Gillis, L.V. Laer, B.L. Loeys, Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular
                smooth muscle cell contractility, Circ. Res. 113 (3) (2013) 327–340.
            [26] D.M. Milewicz, K.M. Trybus, D. Guo, H.L. Sweeney, E. Regalado, K. Kamm, J.T. Stull, Altered smooth muscle cell force generation as a driver
                of thoracic aortic aneurysms and dissections, Arterioscler. Thromb. Vasc. Biol. 37 (1) (2016).
            [27] J.D. Humphrey, Cardiovascular Solid Mechanics, Springer, New York, NY, 2002.
            [28] N. Mao, T. Gu, E. Shi, G. Zhang, L. Yu, C. Wang, Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic
                aneurysm, Interact. Cardiovasc. Thorac. Surg. 21 (1) (2015) 62–70.
            [29] L. Rubbia, G. Gabbiani, Ph  enotype des cellules musculaires lisses art  erielles et ath  eroscl  erose, M  edecine/Sciences 5 (6) (1989) 389.
            [30] A. Tsamis, J.T. Krawiec, D.A. Vorp, Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review, J. R. Soc.
                Interface 10 (83) (2013) 20121004.
            [31] G.K. Owens, P.S. Rabinovitch, S.M. Schwartz, Smooth muscle cell hypertrophy versus hyperplasia in hypertension, Proc. Natl Acad. Sci. USA
                78 (12) (1981) 7759–7763.
            [32] J. Thyberg, K. Blomgren, U. Hedin, M. Dryjski, Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings
                in the rat carotid artery after balloon injury: an electron-microscopic and stereological study, Cell Tissue Res. 281 (3) (1995) 421–433.
            [33] Z. Chen, Y. Xu, P. Bujalowski, A.F. Oberhauser, P.J. Boor, N-(2-aminoethyl) ethanolamine-induced morphological, biochemical, and biophys-
                ical alterations in vascular matrix associated with dissecting aortic aneurysm, Toxicol. Sci. 148 (2) (2015) 421–432.
            [34] P. Reusch, H. Wagdy, R. Reusch, E. Wilson, H.E. Ives, Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression
                in rat vascular smooth muscle cells, Circ. Res. 79 (5) (1996) 1046–1053.
            [35] J. Thyberg, K. Blomgren, J. Roy, P.K. Tran, U. Hedin, Phenotypic modulation of smooth muscle cells after arterial injury is associated with
                changes in the distribution of laminin and fibronectin, J. Histochem. Cytochem. 45 (6) (1997) 837–846.
            [36] J. Thyberg, U. Hedin, M. Sj€ olund, L. Palmberg, B.A. Bottger, Regulation of differentiated properties and proliferation of arterial smooth muscle
                cells, Arteriosclerosis (Dallas, TX) 10 (6) (1990) 966–990.
            [37] J.H.-C. Wang, J.-S. Lin, Cell traction force and measurement methods, Biomech. Model. Mechanobiol. 6 (6) (2007) 361–371.
            [38] T.R. Murray, B.E. Marshall, E.J. Macarak, Contraction of vascular smooth muscle in cell culture, J. Cell Physiol. 143 (1) (1990) 26–38.
            [39] S.-I. Murtada, J. Ferruzzi, H. Yanagisawa, J.D. Humphrey, Reduced biaxial contractility in the descending thoracic aorta of Fibulin-5 deficient
                mice, J. Biomech. Eng. 138 (5) (2016) 051008.
            [40] E.W. Raines, R. Ross, Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis, Br. Heart J. 69 (1 suppl) (1993) S30–S37.
            [41] E. Stadler, J.H. Campbell, G.R. Campbell, Do cultured vascular smooth muscle cells resemble those of the artery wall? If not, why not?
                J. Cardiovasc. Pharmacol. 14 (suppl 6) (1989) S1–S8.
            [42] C. Li, Q. Xu, Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo, Cell. Signal. 19 (5) (2007)
                881–891.
            [43] J.S. Park, J.S. Chu, A.D. Tsou, R. Diop, Z. Tang, A. Wang, S. Li, The effect of matrix stiffness on the differentiation of mesenchymal stem cells in
                response to TGF-β, Biomaterials 32 (16) (2011) 3921–3930.



                                                       I. BIOMECHANICS
   110   111   112   113   114   115   116   117   118   119   120