Page 115 - Advances in Biomechanics and Tissue Regeneration
P. 115
REFERENCES 111
[11] H. Sawada, D.L. Rateri, J.J. Moorleghen, M.W. Majesky, A. Daugherty, Smooth muscle cells derived from second heart field and cardiac neural
crest reside in spatially distinct domains in the media of the ascending aorta—brief report, Arterioscler. Thromb. Vasc. Biol. 37 (9) (2017)
1722–1726.
[12] D. Tremblay, R. Cartier, R. Mongrain, R.L. Leask, Regional dependency of the vascular smooth muscle cell contribution to the mechanical
properties of the pig ascending aortic tissue, J. Biomech. 43 (12) (2010) 2448–2451.
[13] N. Choudhury, O. Bouchot, L. Rouleau, D. Tremblay, R. Cartier, J. Butany, R. Mongrain, R.L. Leask, Local mechanical and structural properties
of healthy and diseased human ascending aorta tissue, Cardiovasc. Pathol. 18 (2) (2009) 83–91.
[14] S. Pasta, A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T.G. Gleason, D.A. Vorp, Difference in hemodynamic and wall stress of ascending tho-
racic aortic aneurysms with bicuspid and tricuspid aortic valve, J. Biomech. 46 (10) (2013) 1729–1738.
[15] J.-B. Michel, G. Jondeau, D.M. Millewicz, From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the
ascending aorta, Cardiovasc. Res. 114 (4) (2018) 578–589.
[16] A.J. Barker, M. Markl, J. B€ urk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, F. von Knobelsdorff-Brenkenhoff, Bicuspid aortic valve is asso-
ciated with altered wall shear stress in the ascending aorta, Circ. Cardiovasc. Imaging 5 (4) (2012) 457–466.
[17] S. Schnell, D.A. Smith, A.J. Barker, P. Entezari, A.R. Honarmand, M.L. Carr, S.C. Malaisrie, P.M. McCarthy, J. Collins, J.C. Carr,
M. Markl, Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns, Eur. Heart J. Cardiovasc. Imaging 17 (11)
(2016) 1239–1247.
[18] F.J. Miller, W.J. Sharp, X. Fang, L.W. Oberley, T.D. Oberley, N.L. Weintraub, Oxidative stress in human abdominal aortic aneurysms: a poten-
tial mediator of aneurysmal remodeling, Arterioscler. Thromb. Vasc. Biol. 22 (4) (2002) 560–565.
[19] M.M. Dua, R.L. Dalman, Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm patho-
physiology, Vascul. Pharmacol. 53 (1–2) (2010) 11–21.
[20] A.J. Brownstein, B.A. Ziganshin, H. Kuivaniemi, S.C. Body, A.E. Bale, J.A. Elefteriades, Genes associated with thoracic aortic aneurysm and
dissection: an update and clinical implications, Aorta (Stamford, CN) 5 (1) (2017) 11–20.
[21] J.D. Humphrey, M.A. Schwartz, G. Tellides, D.M. Milewicz, Role of mechanotransduction in vascular biology: focus on thoracic aortic aneu-
rysms and dissections, Circ. Res. 116 (8) (2015) 1448–1461.
[22] D.-C. Guo, H. Pannu, V. Tran-Fadulu, C.L. Papke, R.K. Yu, N. Avidan, S. Bourgeois, A.L. Estrera, H.J. Safi, E. Sparks, D. Amor, L. Ades,
V. McConnell, C.E. Willoughby, D. Abuelo, M. Willing, R.A. Lewis, D.H. Kim, S. Scherer, P.P. Tung, C. Ahn, L.M. Buja, C.
S. Raman, S.S. Shete, D.M. Milewicz, Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections,
Nat. Genet. 39 (12) (2007) 1488–1493.
[23] S.-Q. Kuang, C.S. Kwartler, K.L. Byanova, J. Pham, L. Gong, S.K. Prakash, J. Huang, K.E. Kamm, J.T. Stull, H.L. Sweeney, D.M. Milewicz, Rare,
non-synonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and
phenotype of smooth muscle cells, Circ. Res. 110 (11) (2012) 1411–1422.
[24] J. Chen, H. Li, N. Sundarraj, J.H.-C. Wang, Alpha-smooth muscle actin expression enhances cell traction force, Cell Motil. Cytoskeleton 64 (4)
(2007) 248–257.
[25] E. Gillis, L.V. Laer, B.L. Loeys, Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular
smooth muscle cell contractility, Circ. Res. 113 (3) (2013) 327–340.
[26] D.M. Milewicz, K.M. Trybus, D. Guo, H.L. Sweeney, E. Regalado, K. Kamm, J.T. Stull, Altered smooth muscle cell force generation as a driver
of thoracic aortic aneurysms and dissections, Arterioscler. Thromb. Vasc. Biol. 37 (1) (2016).
[27] J.D. Humphrey, Cardiovascular Solid Mechanics, Springer, New York, NY, 2002.
[28] N. Mao, T. Gu, E. Shi, G. Zhang, L. Yu, C. Wang, Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic
aneurysm, Interact. Cardiovasc. Thorac. Surg. 21 (1) (2015) 62–70.
[29] L. Rubbia, G. Gabbiani, Ph enotype des cellules musculaires lisses art erielles et ath eroscl erose, M edecine/Sciences 5 (6) (1989) 389.
[30] A. Tsamis, J.T. Krawiec, D.A. Vorp, Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review, J. R. Soc.
Interface 10 (83) (2013) 20121004.
[31] G.K. Owens, P.S. Rabinovitch, S.M. Schwartz, Smooth muscle cell hypertrophy versus hyperplasia in hypertension, Proc. Natl Acad. Sci. USA
78 (12) (1981) 7759–7763.
[32] J. Thyberg, K. Blomgren, U. Hedin, M. Dryjski, Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings
in the rat carotid artery after balloon injury: an electron-microscopic and stereological study, Cell Tissue Res. 281 (3) (1995) 421–433.
[33] Z. Chen, Y. Xu, P. Bujalowski, A.F. Oberhauser, P.J. Boor, N-(2-aminoethyl) ethanolamine-induced morphological, biochemical, and biophys-
ical alterations in vascular matrix associated with dissecting aortic aneurysm, Toxicol. Sci. 148 (2) (2015) 421–432.
[34] P. Reusch, H. Wagdy, R. Reusch, E. Wilson, H.E. Ives, Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression
in rat vascular smooth muscle cells, Circ. Res. 79 (5) (1996) 1046–1053.
[35] J. Thyberg, K. Blomgren, J. Roy, P.K. Tran, U. Hedin, Phenotypic modulation of smooth muscle cells after arterial injury is associated with
changes in the distribution of laminin and fibronectin, J. Histochem. Cytochem. 45 (6) (1997) 837–846.
[36] J. Thyberg, U. Hedin, M. Sj€ olund, L. Palmberg, B.A. Bottger, Regulation of differentiated properties and proliferation of arterial smooth muscle
cells, Arteriosclerosis (Dallas, TX) 10 (6) (1990) 966–990.
[37] J.H.-C. Wang, J.-S. Lin, Cell traction force and measurement methods, Biomech. Model. Mechanobiol. 6 (6) (2007) 361–371.
[38] T.R. Murray, B.E. Marshall, E.J. Macarak, Contraction of vascular smooth muscle in cell culture, J. Cell Physiol. 143 (1) (1990) 26–38.
[39] S.-I. Murtada, J. Ferruzzi, H. Yanagisawa, J.D. Humphrey, Reduced biaxial contractility in the descending thoracic aorta of Fibulin-5 deficient
mice, J. Biomech. Eng. 138 (5) (2016) 051008.
[40] E.W. Raines, R. Ross, Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis, Br. Heart J. 69 (1 suppl) (1993) S30–S37.
[41] E. Stadler, J.H. Campbell, G.R. Campbell, Do cultured vascular smooth muscle cells resemble those of the artery wall? If not, why not?
J. Cardiovasc. Pharmacol. 14 (suppl 6) (1989) S1–S8.
[42] C. Li, Q. Xu, Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo, Cell. Signal. 19 (5) (2007)
881–891.
[43] J.S. Park, J.S. Chu, A.D. Tsou, R. Diop, Z. Tang, A. Wang, S. Li, The effect of matrix stiffness on the differentiation of mesenchymal stem cells in
response to TGF-β, Biomaterials 32 (16) (2011) 3921–3930.
I. BIOMECHANICS