Page 183 - Advances in Biomechanics and Tissue Regeneration
P. 183
REFERENCES 179
[36] R.R. Rama, S. Skatulla, Towards real-time cardiac mechanics modelling with patient-specific heart anatomies, Comput. Methods Appl. Mech.
Eng. 328 (2018) 47–74, https://doi.org/10.1016/j.cma.2017.08.015.
[37] F. Haddad, S.A. Hunt, D.N. Rosenthal, D.J. Murphy, Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging,
and functional assessment of the right ventricle, Circulation 117 (11) (2008) 1436–1448, https://doi.org/10.1161/CIRCULATIONAHA.
107.653576.
[38] L.E. Hudsmith, S.E. Petersen, J.M. Francis, M.D. Robson, S. Neubauer, Normal human left and right ventricular and left atrial dimensions using
steady state free precession magnetic resonance imaging, J. Cardiovasc. Magn. Reson. 7 (5) (2009) 775–782, https://doi.org/
10.1080/10976640500295516.
[39] J. Kjaergaard, C.L. Petersen, A. Kjaer, B.K. Schaadt, J.K. Oh, C. Hassager, Evaluation of right ventricular volume and function by 2D and 3D
echocardiography compared to MRI, Eur. J. Echocardiogr. 7 (6) (2006) 430–438, https://doi.org/10.1016/j.euje.2005.10.009.
[40] J. Sandstede, C. Lipke, M. Beer, S. Hofmann, T. Pabst, W. Kenn, S. Neubauer, D. Hahn, Age- and gender-specific differences in left and right
ventricular cardiac function and mass determined by cine magnetic resonance imaging, Eur. Radiol. 10 (3) (2000) 438–442, https://doi.org/
10.1007/s003300050072.
[41] P. Stolzmann, H. Scheffel, P.T. Trindade, A.R. Plass, L. Husmann, S. Leschka, M. Genoni, B. Marincek, P.A. Kaufmann, H. Alkadhi, Left ven-
tricular and left atrial dimensions and volumes: comparison between dual-source CT and echocardiography, Investig. Radiol. 43 (5) (2008)
284–289, https://doi.org/10.1097/RLI.0b013e3181626853.
[42] L.G. Rudski, W.W. Lai, J. Afilalo, L. Hua, M.D. Handschumacher, K. Chandrasekaran, S.D. Solomon, E.K. Louie, N.B. Schiller, Guidelines for the
echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography, J. Am. Soc. Echocardiogr.
23 (7) (2010) 685–713, https://doi.org/10.1016/j.echo.2010.05.010. quiz 786–788.
[43] G. Sommer, A.J. Schriefl, M. Andr€ a, M. Sacherer, C. Viertler, H. Wolinski, G.A. Holzapfel, Biomechanical properties and microstructure of
human ventricular myocardium, Acta Biomater. (2015), https://doi.org/10.1016/j.actbio.2015.06.031.
[44] E. Iuliano, D. Quagliarella, Proper orthogonal decomposition, surrogate modelling and evolutionary optimization in aerodynamic design,
Comput. Fluids 84 (2013) 327–350, https://doi.org/10.1016/j.compfluid.2013.06.007.
[45] D. Amsallem, R. Tezaur, C. Farhat, Real-time solution of computational problems using databases of parametric linear reduced-order models
with arbitrary underlying meshes, http://arxiv.org/abs/1506.07153, 2015.
[46] D. González, E. Cueto, F. Chinesta, Computational patient avatars for surgery planning, Ann. Biomed. Eng. 44 (1) (2016) 35–45, https://doi.
org/10.1007/s10439-015-1362-z.
[47] A. Myronenko, A. Myronenko, X. Song, X. Song, M.Á. Carreira-Perpiñán, M.Á. Carreira-Perpiñán, Non-rigid point set registration: coherent
point drift, in: B. Sch€ olkopf, J. Platt, T. Hoffman (Eds.), Advances in Neural Information Processing Systems, vol. 19, MIT Press, Cambridge, MA,
2007, pp. 1009–1016. ISBN: 0162-8828, https://doi.org/10.1109/TPAMI.2010.46.
[48] A. Myronenko, X. Song, Point set registration: coherent point drift, IEEE Trans. Pattern Anal. Mach. Intell. 32 (12) (2010) 2262–2275, https://doi.
org/10.1109/TPAMI.2010.46.
[49] T.P. Usyk, A.D. McCulloch, Computational method for soft tissue biomechanics, Biomech. Soft Tissue Cardiovasc. Syst. 441 (2002) 273–342,
https://doi.org/10.1007/978-3-7091-2736-0_7.
[50] D. Legner, S. Skatulla, J.M. Bewu, R.R. Rama, B.D. Reddy, C. Sansour, N.H. Davies, T. Franz, Studying the influence of hydrogel injections into
the infarcted left ventricle using the element-free Galerkin method, Int. J. Numer. Methods Biomed. Eng. 30 (2014) 416–429, https://doi.org/
10.1002/cnm.2610.
[51] D. Rohmer, A. Sitek, G.T. Gullberg, Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo
diffusion tensor magnetic resonance imaging (DTMRI) data, Investig. Radiol. 42 (11) (2007) 777–789, https://doi.org/10.1097/
RLI.0b013e3181238330.
[52] J. Wong, E. Kuhl, Generating fibre orientation maps in human heart models using Poisson interpolation, Comput. Methods Biomech. Biomed.
Eng. 17 (11) (2014) 1217–1226, https://doi.org/10.1080/10255842.2012.739167.
[53] S. Skatulla, C. Sansour, On a path-following method for non-linear solid mechanics with applications to structural and cardiac mechanics subject
to arbitrary loading scenarios, Int. J. Solids Struct. 96 (2016) 181–191.
[54] J.M. Guccione, K.D. Costa, A.D. McCulloch, Finite element stress analysis of left ventricular mechanics in the beating dog heart, J. Biomech.
28 (10) (1995) 1167–1177.
[55] J.C. Walker, M.B. Ratcliffe, P. Zhang, A.W. Wallace, E.W. Hsu, D.A. Saloner, J.M. Guccione, Magnetic resonance imaging-based finite element
stress analysis after linear repair of left ventricular aneurysm, J. Thorac. Cardiovasc. Surg. 135 (5) (2008) 1094–1102.
[56] J.F. Wenk, P. Eslami, Z. Zhang, C. Xu, E. Kuhl, J.H. Gorman III., J.D. Robb, M.B. Ratcliffe, R.C. Gorman, J.M. Guccione, A novel
method for quantifying the in-vivo mechanical effect of material injected into a myocardial infarction, Ann. Thorac. Surg. 92 (3) (2011)
935–941.
[57] L.C. Lee, L. Ge, Z. Zhang, M. Pease, S.D. Nikolic, R. Mishra, M.B. Ratcliffe, J.M. Guccione, Patient-specific finite element modeling of the car-
diokinetix parachute device: effects on left ventricular wall stress and function, Med. Biol. Eng. Comput. 52 (6) (2014) 557–566.
[58] M. Genet, L.C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, J.M. Guccione, Distribution of
normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments,
J. Appl. Physiol. 117 (2) (2014) 142–152.
[59] V. Creigen, S.V. Mourik, V. Rottsch, M. Vellekoop, Modeling a heart pump, in: Proceedings of the 58th European Study Group Mathematics
With Industry, 2007, pp. 7–26.
[60] P. Molino, C. Cerutti, C. Julien, G. Cuisinaud, M.-P. Gustin, C. Paultre, Beat-to-beat estimation of Windkessel model parameters in conscious
rats, Am. J. Physiol. Heart Circ. Physiol. 274 (1) (1998) H171–H177.
[61] J.T. Ottesen, M. Danielsen, Modeling ventricular contraction with heart rate changes, J. Theor. Biol. 222 (3) (2003) 337–346.
[62] P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. Van Campen, R.S. Reneman, Dependence of local left ventricular wall mechanics on myocardial
fiber orientation: a model study, J. Biomech. 25 (10) (1992) 1129–1140.
[63] J. Sainte-Marie, D. Chapelle, R. Cimrman, M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Comput. Struct.
84 (2006) 1743–1759.
I. BIOMECHANICS