Page 184 - Advances in Biomechanics and Tissue Regeneration
P. 184

180                             8. TOWARDS THE REAL-TIME MODELING OF THE HEART

           [64] R.C.P. Kerckoffs, P.H.M. Bovendeerd, J.C.S. Kotte, F.W. Prinzen, K. Smits, T. Arts, Homogeneity of cardiac contraction despite physiological
               asynchrony of depolarization: a model study, Ann. Biomed. Eng. 31 (5) (2003) 536–547.
           [65] M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D.L.G. Hill, D. Chapelle, R. Razavi, Cardiac function
               estimation from MRI using a heart model and data assimilation: advances and difficulties, Med. Image Anal. 10 (4) (2006) 642–656, https://doi.
               org/10.1016/j.media.2006.04.002.
           [66] R.C.P. Kerckhoffs, M.L. Neal, Q. Gu, J.B. Bassingthwaighte, J.H. Omens, A.D. McCulloch, Coupling of a 3D finite element model of cardiac
               ventricular mechanics to lumped systems models of the systemic and pulmonic circulation, Ann. Biomed. Eng. 35 (1) (2007) 1–18.
           [67] S. Parragh, B. Hametner, S. Wassertheurer, Influence of an asymptotic pressure level on the Windkessel models of the arterial system,
               IFAC-PapersOnLine 48 (1) (2015) 17–22.
           [68] N. Westerhof, J.-W. Lankhaar, B.E. Westerhof, The arterial Windkessel, Med. Biol. Eng. Comput. 47 (2) (2009) 131–141.
           [69] A.M. Katz, Physiology of the Heart, fifth ed., Lippincott Williams & Wilkins, Philadelphia, PA, 2010.
           [70] M. Loève, Function aleatoire de second ordre, Comptes Rendus Acad. Sci., Paris, 1945, p. 220.
           [71] K. Karhunen, Zur Spektraltheorie Stochastischer Prozesse, Ann. Acad. Sci. Fennicae A1 (1946) 34.
           [72] C.G. Wu, Y.C. Liang, W.Z. Lin, H.P. Lee, S.P. Lim, A note on equivalence of proper orthogonal decomposition methods, J. Sound Vibr. 265 (2003)
               1103–1110, https://doi.org/10.1016/S0022-460X(03)00032-4.
           [73] B.-T. Tan, K. Willcox, M. Damodaran, Applications of properorthogonal decomposition for inviscid transonic aerodynamics, Singapore-MIT
               Alliance, Tech. Rep. (2003). Available from, http://dspace.mit.edu/bitstream/handle/1721.1/3694/HPCES002.pdf?sequence¼2.
           [74] P. Druault, P. Guibert, F. Alizon, Use of proper orthogonal decomposition for time interpolation from PIV data: application to the cycle-to-cycle
               variation analysis of in-cylinder engine flows, Exp. Fluids 39 (2005) 1009–1023, https://doi.org/10.1007/s00348-005-0035-3.
           [75] L. Sirovich, Turbulence and the dynamics of coherent structures, Appl. Math. XLV (3) (1987) 561–582.
           [76] H. Li, Z. Luo, J. Chen, Numerical simulation based on POD for two-dimensional solute transport problems, Appl. Math. Model. 35 (5) (2011)
               2489–2498, https://doi.org/10.1016/j.apm.2010.11.064.
           [77] G. Kerschen, J.-C. Golinval, A.F. Vakakis, L.A. Bergman, The method of proper orthogonal decomposition for dynamical characterisation and
               order reduction of mechanical systems: an overview, Nonlinear Dyn. 41 (1–3) (2005) 147–169, https://doi.org/10.1007/s11071-005-2803-2.
           [78] J. Barbic, D. James, Real-time subspace integration for St. Venant-Kirchhoff deformable models, ACM Trans. Graph. 24 (3) (2005) 982–990,
               https://doi.org/10.1145/1073204.1073300.
           [79] N.J. Falkiewicz, C.E.S. Cesnik, Proper orthogonal decomposition for reduced-order thermal solution in hypersonic aerothermielastic simulation,
               AIAA J. 49 (5) (2011) 994–1009, https://doi.org/10.2514/1.J050701.
           [80] W.Z. Lin, Y.J. Zhang, E.P. Li, Proper orthogonal decomposition in the generation of reduced order models for interconnects, EEE Trans. Adv.
               Packag. 31 (3) (2008) 627, https://doi.org/10.1109/TADVP.2008.927820.
           [81] J. Dolbow, T. Belytschko, An introduction to programming the meshless element F reeGalerkin method, Arch. Comput. Methods Eng. 5 (3)
               (1998) 207–241, https://doi.org/10.1007/BF02897874.
           [82] T.P. Usyk, R. Mazhari, A.D. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left
               ventricle, J. Elast. 61 (2000) 143–164, https://doi.org/10.1023/A:1010883920374.
           [83] K. Hormann, A. Agathos, The point in polygon problem for arbitrary polygons, Comput. Geom. Theory Appl. 20 (3) (2001) 131–144, https://
               doi.org/10.1016/S0925-7721(01)00012-8.
           [84] M. Chen, T. Townsend, Efficient and consistent algorithms for determining the containment of points in polygons and polyhedra, in: G. Marechal
               (Ed.), Eurographics 87, Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1987, pp. 423–437. 10.1.1.173.1916.
           [85] D.G. Alciatore, R. Miranda, A winding number and point-in-polygon algorithm, Technical report, Colorado State University, 1995.
           [86] P.S. Heckbert, Graphics Gems IV, Academic Press, Boston MA, 1994.
           [87] N. Toussaint, C.T. Stoeck, T. Schaeffter, S. Kozerke, M. Sermesant, P.G. Batchelor, In vivo human cardiac fibre architecture estimation using
               shape-based diffusion tensor processing, Med. Image Anal. 17 (8) (2013) 1243–1255, https://doi.org/10.1016/j.media.2013.02.008.
           [88] P. Lamata, M. Sinclair, E. Kerfoot, A. Lee, A. Crozier, B. Blazevic, S. Land, A.J. Lewandowski, D. Barber, S. Niederer, N. Smith, An automatic
               service for the personalization of ventricular cardiac meshes, J. R. Soc. Interface 11 (91) (2014) 20131023, https://doi.org/10.1098/rsif.2013.1023.
           [89] A.L. Yuille, N.M. Grzywacz, A mathematical analysis of the motion coherence theory, Int. J. Comput. Vis. 3 (2) (1989) 155–175, https://doi.org/
               10.1007/BF00126430.
           [90] SESKA, Computational Continuum Mechanics Research Group, University of Cape Town, South Africa, (2017). http://www.ccm.uct.ac.za/.
           [91] L.A. Simmons, A.G. Gillin, R.W. Jeremy, Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy,
               Am. J. Physiol. 283 (4) (2002) H1627–H1633, https://doi.org/10.1152/ajpheart.00966.2001.
           [92] S.F. Yiu, M. Enriquez-Sarano, C. Tribouilloy, J.B. Seward, A.J. Tajik, Determinants of the degree of functional mitral regurgitation in patients
               with systolic left ventricular dysfunction: a quantitative clinical study, Circulation 102 (12) (2000) 1400–1406, https://doi.org/10.1161/01.
               CIR.102.12.1400.
           [93] M. Oikawa, Y. Kagaya, H. Otani, M. Sakuma, J. Demachi, J. Suzuki, T. Takahashi, J. Nawata, T. Ido, J. Watanabe, K. Shirato, Increased [18F]
               fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol, J. Am.
               Coll. Cardiol. 45 (11) (2005) 1849–1855, https://doi.org/10.1016/j.jacc.2005.02.065.
           [94] W.A. Goetz, E. Lansac, H.-S. Lim, P.A. Weber, C.M.G. Duran, Left ventricular endocardial longitudinal and transverse changes during isovo-
               lumic contraction and relaxation: a challenge, Am. J. Physiol. Heart Circ. Physiol. 289 (1) (2005) H196–H201, https://doi.org/10.1152/
               ajpheart.00867.2004.
           [95] C.R. Greyson, Pathophysiology of right ventricular failure, Crit. Care Med. 36 (1 suppl) (2008) S57–S65, https://doi.org/10.1097/01.
               CCM.0000296265.52518.70.
           [96] V.B. Ho, G.P. Reddy, Cardiovascular Imaging, first ed., Elsevier-Health Sciences Division, Philadelphia, PA, 2010.
           [97] CloudCompare, CloudCompare (version 2.6). (2016). http://www.cloudcompare.org/.
           [98] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, ISBN: 978-1-930934-19-1, 2006.







                                                       I. BIOMECHANICS
   179   180   181   182   183   184   185   186   187   188   189