Page 326 - Advances in Biomechanics and Tissue Regeneration
P. 326

324                           16. ON THE SIMULATION OF ORGAN-ON-CHIP CELL PROCESSES

           And Eq. (16.41) becomes

                                                  N   r     N
                                                 X  ∂C     X       r
                                                              ^
                                               ϕ      i        C , i ¼ 1,…,n                              (16.44)
                                                                ðiÞ
                                                        r
                                                s    ∂t  ϕ ¼    sr  i
                                                 r¼1       r¼1
           where we have defined
                                                          ^
                                                           sr ¼ ϕ ϕ                                       (16.45)
                                                                s r
                                            P N   r         P N   r
                                                                 f ϕ becomes
                                                    r
                                                  i
           Finally, Eq. (16.30) with ϕ ¼ ϕ s , C i ¼  r¼1  C ϕ and f i ¼  r¼1 i  r
                                                        r
                                                           r
                                                      C ¼ f , i ¼ 1,…,n                                    (16.46)
                                                        i  i
                                            P N   r
                                                    r
                                                  i
           and Eq. (16.31) with ϕ ¼ ϕ s and C i ¼  r¼1 C ϕ :
                                     N   Z         !     Z           Z
                                    X                 r       ∂C i
                                            κ i ϕ ϕ dΓ C +  ϕ s  dΓ ¼    ϕ g i dΓ, i ¼ 1,…,n               (16.47)
                                                                          s
                                              s r
                                                      i
                                    r¼1   Γ R i           Γ R i  ∂n   Γ R i
           16.5.1.2.2 CHEMICAL SPECIES
           In the same way as above, plugging now Eq. (16.36) into Eq. (16.33) we obtain
                                                         !
                                     N
                               Z          r      Z             Z         Z
                                     X  ∂S i                                 ∂S i
                                   ϕ      ϕ dΩ     —ϕ   B i dΩ ¼  ϕb i dΩ   ϕ   dΓ, i ¼ 1,…,m              (16.48)
                                            r
                                 Ω   r¼1  ∂t      Ω             Ω         Γ 0  ∂n
                                                                           R
                                                                           i
           Using again the linear properties of — operator, Eq. (16.25) writes
                                                      N
                                                     X    r
                                                        ðS K  Þ—ϕ , i ¼ 1,…,m                              (16.49)
                                                 0          0
                                                 i
                                                q ¼       i  D,i  r
                                                     r¼1
           So, as B i ¼ S i v + q it is obtained
                           0
                           i
                                                      !
                                                N           N
                                                X   r      X    r
                                                  S ϕ         ðS K 0  Þ—ϕ , i ¼ 1,…,m                      (16.50)
                                          B i ¼     i  r  v     i  D,i  r
                                                r¼1        r¼1
           So, —ϕ  B i writes
                                                 N
                                                X   r
                                                   S —ϕ   ϕ v —ϕ  ðK 0  —ϕ Þ, i ¼ 1,…,m                    (16.51)
                                        —ϕ   B i ¼  i     r         D,i  r
                                                r¼1
                           r
                       r
           Besides, as S ¼ S ðtÞ, ϕ ∂S r i  writes
                       i   i    ∂t
                                                  N   r      N
                                                 X  ∂S      X   r
                                                               _
                                               ϕ      i  ϕ ¼ ϕ  S ϕ , i ¼ 1,…,m                            (16.52)
                                                        r
                                                                  r
                                                    ∂t          i
                                                 r¼1        r¼1
           Choosing as before ϕ ¼ ϕ s , s ¼ 1, …, N (Galerkin method) and reorganizing terms in Eq. (16.51) we may write
                                                          N
                                                         X
                                                            ^
                                                             0ðiÞ  r
                                                   s            S , i ¼ 1,…,m                              (16.53)
                                                 —ϕ   B i ¼   sr  i
                                                         r¼1
           where we have defined
                                          ^
                                           0ðiÞ  ¼ð—ϕ  ðϕ vÞ —ϕ   K 0 D,i —ϕ Þ, i ¼ 1,…,m                 (16.54)
                                                              s
                                                                      r
                                                       r
                                                   s
                                            sr
           And Eq. (16.52) becomes
                                                  N   r     N
                                                 X  ∂S     X      r
                                                              ^
                                               ϕ      i        S , i ¼ 1,…,m                              (16.55)
                                                                ðiÞ
                                                        r
                                                s   ∂t  ϕ ¼     sr  i
                                                 r¼1       r¼1
                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   321   322   323   324   325   326   327   328   329   330   331