Page 324 - Advances in Biomechanics and Tissue Regeneration
P. 324

322                           16. ON THE SIMULATION OF ORGAN-ON-CHIP CELL PROCESSES

                                                           we obtain
           and repeating it with Eq. (16.3) and integrating in Γ R i
                                         Z           Z    ∂C i   Z
                                            κ i ϕC i dΓ +  ϕ  dΓ ¼  ϕg i dΓ, i ¼ 1,…,n                     (16.31)
                                                          ∂n
                                          Γ R i       Γ R i       Γ R i
           The same strategy is followed with Eq. (16.4) obtaining
                                            Z                  Z
                                                ∂S i
                                              ϕ    + ϕ—   B i dΩ ¼  b i ϕdΩ, i ¼ 1,…,m                     (16.32)
                                             Ω  ∂t              Ω
           where we have defined
                                                      B i ¼ S i v + q 0 i
                                                           m
                                                           X
                                                                 0   0
                                                                     ij
                                                                 ji
                                                      b i ¼  C j ðF  F Þ
                                                           j¼1
           A new integration by parts of Eq. (16.32) leads to
                                     Z                    Z         Z
                                        ϕ  ∂S i   —ϕ   B i dΩ ¼  ϕb i dΩ   ϕ  ∂S i dΓ, i ¼ 1,…,m           (16.33)
                                      Ω   ∂t               Ω             ∂n
                                                                      R
                                                                     Γ 0
                                                                      i
           We do analogously with boundary conditions (16.5), (16.6) in order to obtain
                                               Z          Z
                                                              ϕf dΓ, i ¼ 1,…,m
                                                                0
                                                   ϕS i dΓ ¼   i                                           (16.34)
                                                 D          D
                                                 Γ 0       Γ 0
                                                  i          i
           and repeating it with Eq. (16.3) and integrating in Γ  0 we get
                                                         R
                                                          i
                                         Z           Z           Z
                                                         ∂S i
                                            κ ϕS i dΓ +  ϕ          ϕg dΓ, i ¼ 1,…,m
                                                                      0
                                             0
                                             i              dΓ ¼      i                                    (16.35)
                                                          ∂n
                                          Γ 0         Γ 0         Γ 0
                                           R           R           R
                                            i          i           i
           16.5.1.2 Spatial Discretization
           All scalar and vectorial fields involved in the problem are discretized using a finite basis of dimension
           N, B¼ fϕ ,r ¼ 1,…,Ng, that is,
                    r
                                                        N
                                                       X   r
                                                          C ðtÞϕ ðxÞ, i ¼ 1,…,n
                                               C i ðx,tÞ¼  i    r
                                                        r¼1
                                                        N
                                                       X   r
                                                          S ðtÞϕ ðxÞ, i ¼ 1,…,m
                                                S i ðx,tÞ¼  i  r
                                                        r¼1
                                                        N
                                                           r
                                                       X
                                                               r
                                                θðx,tÞ¼   θ ðtÞϕ ðxÞ
                                                        r¼1
                                                        N
                                                            r
                                                       X
                                                                r
                                                Vðx,tÞ¼   V ðtÞϕ ðxÞ
                                                        r¼1
                                                        N
                                                       X   r
                                                          p ðtÞϕ ðxÞ, i ¼ 1,…,k
                                               p k ðx,tÞ¼  k   r
                                                        r¼1
                                                                                                           (16.36)
                                                        N
                                                           r
                                                       X
                                                               r
                                                    v ¼   v ðtÞϕ ðxÞ
                                                        r¼1
           Note that all fields are approximated using the same basis and a separation representation in space time is postulated.
           Even if it is not the most general approach, the fact that Eqs. (16.29), (16.33) involve up to first-order derivatives is
           consistent with this FE approximation.
                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   319   320   321   322   323   324   325   326   327   328   329