Page 322 - Advances in Biomechanics and Tissue Regeneration
P. 322

320                           16. ON THE SIMULATION OF ORGAN-ON-CHIP CELL PROCESSES

           16.4.2.2 Migration Terms in Cell Population Equations
              Now, migration terms (biological related transport) are defined. The flux vector q i is postulated as a linear
           decomposition:
                                            q ¼ q D,i  + q m,i  + q + q E,i  + q , i ¼ 1,…,n               (16.12)
                                                           s,i
                                             i
                                                                     T,i
           where the flux vectors q D,i , q m,i , q s,i , q E,i , and q T,i are associated with diffusion, mechanotaxis, chemotaxis, electrotaxis,
           and thermotaxis phenomena, respectively.
           16.4.2.2.1 DIFFUSION
              The common framework is used to model diffusion, that is
                                                  q   ¼ K D,i —C i , i ¼ 1,…,n                             (16.13)
                                                   D,i
           Here, matrix K D, i is the diffusion matrix that can be expressed as
                                           K D,i ¼K D,i ðC 1 ,…,C n ,θ,p 1 ,…,p k Þ, i ¼ 1,…,n             (16.14)

           16.4.2.2.2 MECHANOTAXIS
           The mechanotaxis term can be expressed in a similar manner, using the expression
                                                        k
                                                       X
                                                 q        K m,i, j —p j , i ¼ 1,…,n                        (16.15)
                                                  m,i  ¼
                                                       j¼1
           where K m, i, j is the mechanotactic motility matrix of species i with respect to parameter p j expressed as:
                                           K m,i, j ¼K m,i, j ðC 1 ,…,C n , p j ,—p j ,θÞ, i ¼ 1,…,n       (16.16)

           16.4.2.2.3 CHEMOTAXIS
           The chemotaxis term is expressed as
                                                        m
                                                       X
                                                          K s,i, j —S j , i ¼ 1,…,n
                                                   s,i                                                     (16.17)
                                                  q ¼
                                                       j¼1
           Here, K s, i, j is the chemotactic motility matrix with respect to the chemical species j. As before, it is possible to express
           the matrix as
                            K s,i, j ¼K s,i, j ðC 1 ,…,C n ,S 1 ,…,S m ,—S 1 ,…,—S m ,θ,p 1 ,…,p k Þ, i ¼ 1,…,n, j ¼ 1,…,m  (16.18)
           It is common to use saturation models for chemotaxis [42], getting:
                                                                                   χ C i
                                                                                    i
                                   K s,i, j ðC 1 ,…,C n ,S 1 ,…,S m ,—S 1 ,…,—S m ,θ,p 1 ,…,p k Þ¼         (16.19)
                                                                               σ j + λ j k —S j k
           where σ j and λ j are parameters depending on the chemical species j and χ i is a sensitivity parameter depending on the
           cellular phenotype i.

           16.4.2.2.4 ELECTROTAXIS
              For electrotaxis, a similar expression can be written:
                                                   q   ¼ K E,i —V, i ¼ 1,…,n                               (16.20)
                                                     E,i
           where K E, i is the electrostatic motility matrix and V is the electric potential. As before,
                                         K E,i ¼K E,i ðC 1 ,…,C n ,θ,p 1 ,…,p k ,V,—VÞ, i ¼ 1,…,n          (16.21)

           16.4.2.2.5 THERMOTAXIS
           Thermotaxis can be modeled using analogous equations:
                                                    p T,i  ¼ K T,i —θ, i ¼ 1,…,n                           (16.22)

           where K T, i is the thermotactic motility matrix and θ is the temperature field, with
                                         K T,i ¼K T,i ðC 1 ,…,C n ,θ,—θ,p 1 ,…,p k ,Þ, i ¼ 1,…,n           (16.23)



                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   317   318   319   320   321   322   323   324   325   326   327