Page 38 - Advances in Biomechanics and Tissue Regeneration
P. 38

32                       2. BIOMECHANICS OF THE VESTIBULAR SYSTEM: A NUMERICAL SIMULATION

           [27] J. Belinha, Meshless Methods in Biomechanics – Bone Tissue Remodelling Analysis, Lecture Notes in Computational Vision and Biomechanics,
               vol. 16, Springer Netherlands, 2014.
           [28] T.Q. Bui, M.N. Nguyen, C. Zhang, An efficient meshfree method for vibration analysis of laminated composite plates, Comput. Mech. 48 (2)
               (Aug. 2011) 175–193.
           [29] G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics, World Scientific, 2003.
           [30] L. Lobovský, J. K  ren, Smoothed particle hydrodynamics modelling of fluids and solids, Appl. Comput. Mech. 1 (2007) 521–530.
           [31] J.J. Monaghan, Smoothed particle hydrodynamics, Reports Prog. Phys. 68 (8) (Aug. 2005) 1703–1759.
           [32] W.K. Liu, S. Jun, S. Li, J. Adee, T. Belytschko, Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Eng. 38 (10)
               (May 1995) 1655–1679.
           [33] C.F. Santos, J. Belinha, F. Gentil, M. Parente, R.N. Jorge, An alternative 3D numerical method to study the biomechanical behaviour of the
               human inner ear semicircular canal, Acta Bioeng. Biomech. 19 (1) (2017) 3–15.
           [34] O.W. Henson, et al., Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill and The Center for In Vivo
               Microscopy, Duke University, Durham, NC, Copyright, 2000.
           [35] J.L. Davis, J. Xue, E.H. Peterson, J.W. Grant, Layer thickness and curvature effects on otoconial membrane deformation in the utricle of the red-
               ear slider turtle: static and modal analysis, J. Vestib. Res. 17 (4) (Jan. 2007) 145–162.
           [36] P. Selva, J. Morlier, Y. Gourinat, Development of a dynamic virtual reality model of the inner ear sensory system as a learning and demonstrat-
               ing tool, Model. Simul. Eng. 2009 (2009) 1–10.
           [37] C. Wu, K. Wang, L. Yang, P. Dai, Three-dimensional models of the membranous vestibular labyrinth in the guinea pig inner ear, in: Proc. 2011
               4th Int. Conf. Biomed. Eng. Informatics, BMEI 2011, vol. 1, 2011, pp. 541–544.
           [38] T.M. Squires, M.S. Weidman, T.C. Hain, H.a. Stone, A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV,
               J. Biomech. 37 (8) (Aug. 2004) 1137–1146.
           [39] J.L. Davis, J. Xue, E.H. Peterson, J.W. Grant, Layer thickness and curvature effects on otoconial membrane deformation in the utricle of the red-
               ear slider turtle: static and modal analysis, J. Vestib. Res. 17 (4) (2007) 145–162.
           [40] C.F. Santos, J. Belinha, F. Gentil, M. Parente, R.N. Jorge, The free vibrations analysis of the cupula in the inner ear using a natural neighbor
               meshless method, Eng. Anal. Bound. Elem. 92 (Jul. 2018) 50–63.






















































                                                       I. BIOMECHANICS
   33   34   35   36   37   38   39   40   41   42   43