Page 146 - Advances in Textile Biotechnology
P. 146

Enzymatic modifi cation of polyacrylonitrile and cellulose acetate fi bres 127


            battistel e, francalanci f, marinetti m and morra m (1995), ‘Modifi ed materials
              based on polyacrylonitrile and process for their production’, European Patent
              EP0662540A1.
            battistel e, morra m and marinetti m (2001), ‘Enzymatic surface modifi cation of
              acrylonitrile fi bres’, Appl Surf Sci, 177, 32–41. doi: 10.1016/S0169-4332(01)00193-
              3.
            boraston a b, bolam d n, gilbert h j and davies g j (2004), ‘Carbohydrate-binding
              modules: fine-tuning polysaccharide recognition’, Biochem J, 382, 769–781. doi:

              10.1042/BJ20040892.
            bornscheuer  u  t (2005),  ‘Trends and challenges in enzyme technology’,  Adv
              Biochem Eng Biotechnol, 100, 181–203. doi: 10.1007/b136409.
            bornscheuer u t and kazlauskas r j (2004), ‘Catalytic promiscuity in biocatalysis:
              using old enzymes to form new bonds and follow new pathways’, Angew Chem
              Int Ed Engl, 43, 6032–6040. doi: 10.1002/anie.200460416.
            brenner c (2002), ‘Catalysis in the nitrilase superfamily’, Curr Opin Struct Biol, 12,
              775–782. doi: 10.1016/S0959-440X(02)00387-1.
            burkinshaw  s  m (1995),  Chemical principles of synthetic fi bre  dyeing, Glasgow,
              Blackie Academic & Professional.
            cabral j m s, aires-barros m r and gama m (2003), Engenharia enzimática, Lisboa,
              Lidel, p. 1–3.
            capone g j (1995), ‘Wet-spinning technology’, in Masson J C, Acrylic fi bre technology
              and applications, New York, CRC, 69–103.
            collier  b  j and  tortora  p  g (2001),  Understanding textiles, New Jersey, Prentice
              Hall.
            cowan  d,  cramp  r,  pereira  r,  graham  d and  almatawah  q (1998), ‘Biochemistry
              and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes’,
              Extremophiles, 2, 207–216. doi: 10.1007/s007920050062.
            deng s and bai r b (2003), ‘Aminated polyacrylonitrile fibers for humic acid adsorp-

              tion: behaviors and mechanisms’, Environ Sci Technol, 37, 5799–5805. doi: 10.1021/
              es034399d.
            deng s and bai r b (2004), ‘Adsorption and desorption of humic acid on aminated
              polyacrylonitrile fi bers’,  J Colloid Interface Sci,  280, 36–43. doi: 10.1016/j.
              jcis.2004.07.007.

            engelhardt a (2008), The fibre year 2007/08: a world survey on textile and nonwo-
              vens industry, Remscheid, Oerlikon Textile GmbH & Co. KG.
            fi scher-colbrie g, herrmann m, heumann s, puolakka a, wirth a, cavaco-paulo a

              and  gübitz  g  m (2006),  ‘Surface modification of polyacrylonitrile with nitrile
              hydratase and amidase from Agrobacterium tumefaciens’, Biocatal Biotransform,
              24, 419–425. doi: 10.1080/10242420601033977.
            fi scher-colbrie g, matamá t, heumann s, martinkova l, cavaco-paulo a and gübitz
              g  m (2007),  ‘Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing
              enzymes from Micrococcus luteus BTS20’, J Biotechnol, 129, 62–68. doi: 10.1016/j.
              jbiotec.2006.11.018.
            frushour  b  g (1995), ‘Acrylic polymer characterization in the solid state and in

              solution’, in Masson J C,  Acrylic fibre technology and applications, New York,
              CRC, 197–257.

            frushour b g and knorr r s (1998), ‘Acrylic fibres’, in Lewin M and Pearce E M,
              Handbook of fi bre chemistry (International Fibre Science and Technology Series),
              New York, Marcel Dekker Inc, 869–1070.



                              © Woodhead Publishing Limited, 2010
   141   142   143   144   145   146   147   148   149   150   151