Page 147 - Advances in Textile Biotechnology
P. 147
128 Advances in textile biotechnology
ghosh d, sawicki m, lala p, erman m, pangborn w, eyzaguirre j, gutiérrez r,
jörnvall h and thiel d j (2001), ‘Multiple conformations of catalytic serine and
histidine in acetylxylan esterase at 0.90 Å’, J Biol Chem, 276, 11159–11166. doi:
10.1074/jbc.M008831200.
glasser w g (2004), ‘Prospects for future applications of cellulose acetate’, in
Rustemeyer P, Macromol Symp – special issue: cellulose acetates: properties and
applications, Weinheim, Wiley-VCH, 371–394. doi: 10.1002/masy.200450416.
greenberg a e, clesceri l s, eaton a d (1992), Standard methods for the examina-
tion of water and wastewater, Washington, D.C., American Public Health Associa-
tion.
gübitz g and cavaco-paulo a (2003), ‘New substrates for reliable enzymes: enzy-
matic modification of polymers’, Curr Opin Biotechnol, 14, 577–582. doi: 10.1016/j.
copbio.2003.09.010.
gübitz g and cavaco-paulo a (2008), ‘Enzymes go big: surface hydrolysis and func-
tionalisation of synthetic polymers’, Trends Biotechnol, 26, 32–38. doi: 10.1016/j.
tibtech.2007.10.003.
guillen j g (1987), Fibras acrílicas, Universidade Politécnica da Catalunha,
LLibreria Costa Terrassa.
hakulinen n, tenkanen m and rouvinen j (2000), ‘Three-dimensional structure
of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights
into the deacetylation mechanism’, J Struct Biol, 132, 180–190. doi: 10.1006/
jsbi.2000.4318.
harper d b (1977), ‘Microbial metabolism of aromatic nitriles. Enzymology of C–N
cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216’, Biochem J, 165,
309–319.
harper d b (1985), ‘Characterization of a nitrilase from Nocardia sp. (Rhodochrous
group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source’, Int J
Biochem, 17, 677–683. doi:10.1016/0020-711X(85)90364-7.
huang x-j, xu z-k, wan l-s, wang z-g and wang j-l (2005), ‘Surface modifi cation
of polyacrylonitrile-based membranes by chemical reactions to generate phos-
pholipids moieties’, Langmuir, 21, 2941–2947. doi: 10.1021/la047419d.
hunter a and renfrew m (1999), Reactive dyes for textile fibres: the chemistry of
activated π-bonds as reactive groups and miscellaneous topics, West Yorkshire,
Society of Dyers and Colourists.
jia z and yang y (2006), ‘Surface modification of poly acrylic fibres (PAC) via graft-
ing of soybean protein isolates (SPI)’, Iran Polym J, 15, 789–798.
khandelwal a k, nigam v k, choudhury b, mohan m k and ghosh p (2007), ‘Opti-
mization of nitrilase production from a new thermophilic isolate’, J Chem Technol
Biotechnol, 82, 646–651. doi: 10.1002/jctb.1721.
koeller k m and wong c-h (2001), ‘Enzymes for chemical synthesis’, Nature, 409,
232–240. doi: 10.1038/35051706.
kuehni r g (1997), Color: an introduction to practice and principles, New York, John
Wiley & Sons.
la nieve h l (2007), ‘Cellulose acetate and triacetate fi bres’, in Lewin M, Handbook
of fi bre chemistry, New York, CRC Press, 774–810.
law r c (2004), ‘Cellulose acetate in textile applications’, in Rustemeyer P, Macro-
mol Symp – special issue: cellulose acetates: properties and applications, Weinheim,
Wiley-VCH, 255–266. doi:10.1002/masy.200450410.
© Woodhead Publishing Limited, 2010