Page 50 - Advances in Textile Biotechnology
P. 50
Design and engineering of novel enzymes for textile applications 29
schulein m (2000), ‘Protein engineering of cellulases’, Biochim Biophys Acta,
1543(2), 239–252. doi:10.1016/S0167-4838(00)00247-8.
schumacher k, heine e and hocker h (2001), ‘Extremozymes for improving
wool properties’, J Biotechnol, 89(2–3), 281–288. doi: 10.1016/S0168-
1656(01)00314-5.
shen j, bishop d p, heine e and hollfelder b (1999), ‘Factors affecting the control
of proteolytic enzyme reactions on wool’, J Text Inst, 90(3), 404–411.
shoseyov o and warren r a j (1997), ‘Cellulose binding domains – a novel fusion
technology for efficient, low cost purification and immobilization of recombinant
proteins’, Innovations, 7, 1–3.
siemers n o, yelton d e, bajorath j and senter pd (1996), ‘Modifying the specifi city
and activity of the Enterobacter cloacae P99 β-lactamase by mutagenesis within
an M13 phage vector’, Biochemistry, 35(7), 2104–2111. doi: 10.1021/bi9514166.
siezen r j and leunissen j a m (1997), ‘Subtilases: The superfamily of subtilisin-like
serine proteases’, Protein Sci, 6(3), 501–523. doi: 10.1002/pro.5560060301.
silbersack j, jürgen b, hecker m, schneidinger b, schmuck r and schweder t
(2006)‚ ‘An acetoin-regulated expression system of Bacillus subtilis’, Appl Micro-
biol Biotechnol, 73(4), 895–903. doi: 10.1007/s00253-006-0549-5.
silva c, araújo r, casal m, gubitz g m and cavaco-paulo a (2007), ‘Infl uence of
mechanical agitation on cutinases and protease activity towards polyamide
substrates’, Enzyme Microb Technol, 40(7), 1678–1685. doi: 10.1016/j.
enzmictec.2006.09.001.
simons j w f a, van kampen m d, ubarretxena-belandia i, cox r c, dos santos c m
a, egmond m r and verheij h m (1999), ‘Identifi cation of a calcium binding site in
Staphylococcus hyicus lipase: generation of calcium-independent variants’, Bio-
chemistry, 38(1), 2–10. doi:10.1021/bi981869l.
solbak a i, richardson t h, mccann r t, kline k a, bartnek f, tomlinson g, tan x,
parra-gessert l, frey g j, podar m, luginbuhl p, gray k a, mathur e j, robertson
d e, burk m j, hazlewood g p, short j m and kerovuo j (2005), ‘Discovery of
pectin-degrading enzymes and directed evolution of a novel pectate lyase for
processing cotton fabric’, J Biol Chem, 280(10), 9431–9438. doi: 10.1074/jbc.
M411838200.
suzuki y, ito n, yuuki t, yamagata h and udaka s (1989), ‘Amino acid residues
stabilizing a Bacillus α-amylase against irreversible thermoinactivation’, J Biol
Chem, 264(32), 18933–18938.
svendsen a (2000), ‘Lipase protein engineering’, Biochim Biophys Acta, 1543(2),
223–238. doi:10.1016/S0167-4838(00)00239-9.
svendsen a, clausen i g, patkar s a, borch k and thellersen m (1997), ‘Protein
engineering of microbial lipases of industrial interest’, Methods Enzymol, 284,
317–340.
takagi h, takahashis t, momose h, inouye m, maeda y, matsuzawa h and ohta t
(1990), ‘Enhancement of the thermostability of subtilisin E by introduction of a
disulfide bond engineered on the basis of structural comparison with a ther-
mophilic serine protease’, J Biol Chem, 265(12), 6874–6878.
tao h and cornish v w (2002), ‘Milestones in directed evolution’, Curr Opin Chem
Biol, 6(6), 858–864. doi: 10.1016/S1367-5931(02)00396-4.
teeri t t (1997), ‘Crystalline cellulose degradation: new insight into the function
of cellobiohydrolases’, Trends Biotechnol, 15(5), 160–167. doi: 10.1016/S0167-
7799(97)01032-9.
© Woodhead Publishing Limited, 2010