Page 46 - Advances in Textile Biotechnology
P. 46

Design and engineering of novel enzymes for textile applications   25


            erwin c r, barnett b l, oliver j d and sullivan j f (1990), ‘Effects of engineered
              salt bridges on the stability of subtilisin BPN’, Protein Eng, 4, 87–97.

            estell d a and wells j a (1988), ‘Modified enzymes and methods for making same’,
              U.S. Patent 4 760025.
            estell  d  a,  graycar  t  p and  wells  j  a (1985), ‘Engineering an enzyme by site-
              directed mutagenesis to be resistant to chemical oxidation’, J Biol Chem, 260(11),
              6518–6521.
            farinas e t, bulter t and arnold f h (2001), ‘Directed enzyme evolution’, Curr
              Opin Biotechnol, 12(6), 545–551. doi: 10.1016/S0958-1669(01)00261-0.
            fregel r, rodríguez v and cabrera v m (2008), ‘Microwave improved Escherichia
              coli transformation’,  Lett Appl  Microbiol,  46(4), 498–499. doi: 10.1111/
              j.1472-765X.2008.02333.
            frenken l g j, egmond m r, batenburg a m and verrips c t (1993), ‘Pseudomonas
              glumae lipase: increased proteolytic stability by protein engineering’, Protein Eng,
              6(6), 637–642.
            fujiwara  s (2002),  ‘Extremophiles: developments of their special functions
              and potential resources’,  J Biosci Bioeng,  94(6), 518–525. doi:10.1016/S1389-
              1723(02)80189-X.
            galante  y  m and  formantici  c (2003), ‘Enzyme applications in detergency and
              in manufacturing industries’,  Curr Org Chem,  7(13), 1399–1422. doi:10.2174/
              1385272033486468.
            girbal l, von abendroth g, winkler m, benton p m c, meynial-salles i, croux c,
              peters j w, happe t and soucaille p (2005), ‘Homologous and heterologous over-
              expression in Clostridium acetobutylicum and characterization of purifi ed clos-
              tridial and algal Fe-only hydrogenases with high specifi c activities’, Appl Environ
              Microbiol, 71(5), 2777–2781. doi: 10.1128/AEM.71.5.2777-2781.2005.
            gorbalenya a e and koonin e v (1991), ‘Endonuclease (R) subunits of type-I and

              type-III restriction-modification enzymes contain a helicase-like domain’, FEBS,
              291(2), 277–281. doi: 10.1016/0014-5793(91)81301-N.
            guebitz g m and cavaco-paulo a (2008), ‘Enzymes go big: surface hydrolysis and
              functionalisation of synthetic polymers’, Trends Biotech, 26(1), 32–38. doi:10.1016/j.
              tibtech.2007.10.003.
            hashida m and bisgaard-frantzen h (2000), ‘Protein engineering of new industrial
              amylases’, Trends Glycosci Glycotechnol, 12(68), 389–401.
            hemsley  a,  amheim  n,  toney  m  d,  cortopassi  g and  galas  d  j (1989), ‘A simple
              method for site-directed mutagenesis using the polymerase chain reaction’,
              Nucleic Acids Res, 17, 6545–6551.
            ho s n, hunt h d, morton r m, pullen j k and pease l r (1989), ‘Site-directed muta-
              genesis by overlap extension using the polymerase chain reaction’,  Gene,  77,
              51–59.
            hodgson  j (1994), ‘The changing bulk catalysis market: recombinant DNA tech-
              niques have changed bulk enzyme production dramatically’, Biotechnology, 12,
              789–790.
            hollenberg c p and gellissen g (1997), ‘Production of recombinant proteins by
              methylotrophic yeasts’,  Curr Opin Biotech,  8(5), 554–560.  doi: 10.1016/S0958-
              1669(97)80028-6.
            huff j p, grant b j, penning c a and sullivan k f (1990), ‘Optimization of routine
              transformation of  Escherichia coli with plasmid DNA’,  Biotechniques,  9(5),
              570–577.



                              © Woodhead Publishing Limited, 2010
   41   42   43   44   45   46   47   48   49   50   51