Page 51 - Advances in Textile Biotechnology
P. 51
30 Advances in textile biotechnology
tzanov t, calafell m, guebitz g m and cavaco-paulo a (2001), ‘Bio-preparation of
cotton fabrics’, Enzyme Microb Technol, 29(6–7), 357–362. doi: 10.1016/S0141-
0229(01)00388-X.
van der laan j m, lenting h b m, mulleners l j s m and cox m m j (1994), Interna-
tional Patent Application WO 94/25578.
van der laan j m and may m (1995), ‘Novel amylolytic enzymes derived from the
B. licheniformis χ-amylase, having improved characteristics’, International Patent
WO 95/35382.
verma m, brar s k, tyagi r d, surampalli r y and valéro j r (2007), ‘Antagonistic
fungi, Trichoderma spp.: panoply of biological control’, Biochem Eng J, 37(1),
1–20. doi: 10.1016/j.bej.2007.05.012.
von der osten c, bjornvad m e, vind j and rasmussen m d (2000a), ‘Process and
composition for desizing cellulosic fabric with an enzyme hybrid’, United States
Patent 6017751.
von der osten c, cherry j r, bjornvad m f, vind j and rasmussen m d (2000b),
‘Process for removal or bleaching of soiling or stains from cellulosic fabrics’, U.S.
Patent 6015783.
voutilainen s p, boer h, alapuranen m, jänis j, vehmaanperä j and koivula a
(2009) ‘Improving the thermostability and activity of Melanocarpus albomyces
cellobiohydrolase Cel7B’, Appl Microbiol Biotechnol, 83(2), 261–272. doi: 10.1007/
s00253-008-1848-9.
voutilainen s p, boer h, linder m b, puranen t, rouvinen j, vehmaanperä j and
koivula a (2007), ‘Heterologous expression of Melanocarpus albomyces cello-
biohydrolase Cel7B, and random mutagenesis to improve its thermostability’,
Enzyme Microb Technol, 41(3), 234–243. doi:10.1016/j.enzmictec.2007.01.015.
wang t, liu x, yu q, zhang x, qu y, gao p and wang t (2005), ‘Directed evolution
for engineering pH profile of endoglucanase III from Trichoderma reesei’, Biomol
Eng, 22(1–3), 89–94. doi:10.1016/j.bioeng.2004.10.003.
wang x s, wang p z, kong l y and ruang h j (1993), ‘Thermal stability improvement
of subtilisin E with protein engineering’, Chin J Biochem Biophys, 25, 51–61.
weiss b (1971), ‘DNA ligase from Escherichia coli infected with bacteriophage T4’,
Method Enzymol, 21, 319–326.
weiss b, jacquemin-sablon a, live t r, fareed g c and richardson c c (1968),
‘Enzymatic breakage and joining of deoxyribonucleic acid. 6. Further purifi cation
and properties of polynucleotide ligase from Escherichia coli infected with bac-
teriophageta T4’, J Biol Chem, 243(17), 4543–4555.
wells j a, cunningham b c, graycar t p and estell d a (1987), ‘Recruitment of
substrate-specificity properties from one enzyme into a related one by protein
engineering’, Proc Natl Acad Sci USA, 84(15), 5167–5171.
williams r j (2003), ‘Restriction endonucleases – classification, properties, and
applications’ Mol Biotechnol, 23(3), 225–243. doi:10.1385/MB:23:3:225.
wilson g g and murray n e (1991), ‘Restriction and modifi cation systems’, Annu
Rev Genet, 25, 585–627.
windish w w and mhatre n s (1965), ‘Microbial amylases’. In: Wayne W U,
editor. Advances in applied microbiology, Vol. 7. New York: Academic Press, pp.
273–304.
wolff a m, showell m s, venegas m g, barnett b l and wertz w c (1996), ‘Laundry
performance of subtilisin proteases’, Adv Exp Med Biol, 379, 113–120.
© Woodhead Publishing Limited, 2010