Page 49 - Advances in Textile Biotechnology
P. 49
28 Advances in textile biotechnology
stable heterologous proteins in Lactococcus lactis’, Appl Environ Microbiol,
68(6), 3141–3146. doi: 10.1128/AEM.68.6.3141-3146.2002.
murray n e, bruce s a and murray k (1979), ‘Molecular cloning of the DNA ligase
gene from bacteriophage T4 II. Amplification and preparation of the Gene
Product’, J Mol Biol, 132(3), 493–505. doi: 10.1016/0022-2836(79)90271-7.
nakata y, tang x and yokoyama k k (1997), ‘Preparation of competent cells for
high-efficiency plasmid transformation of Escherichia coli’, Methods Mol Biol, 69,
129–137.
nielsen j e and borchert t v (2000), ‘Protein engineering of bacterial α-amylases’,
Biochim Biophys Acta, 1543(2), 253–274. doi:10.1016/S0167-4838(00)00240-5.
o’neill a, araújo r, casal m, guebitz g and cavaco-paulo a (2007), ‘Effect of the
agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene
terephthalate fi bres’, Enzyme Microb Technol, 40(7), 1801–1805. doi: 10.1016/j.
enzmictec.2007.02.012.
ogay i d, lihoradova o a, azimova s s, abdukarimov a a, slack j m and lynn d e
(2006), ‘Transfection of insect cell lines using polyethylenimine’, Cytotechnology,
51(2), 89–98. doi: 10.1007/s10616-006-9022-7.
oishi m and cosloy s d (1972), ‘The genetic and biochemical basis of the transform-
ability of Escherichia coli K-12’, Biochem Biophys Res Commun, 49(6), 1568–
1572. doi: 10.1016/0006-291X(72)90520-7.
patkar s a, vind j, kelstrup e, christensen m w, svendsen a, borch k and kirk o
(1998), ‘Effect of mutations in Candida antarctica B lipase’, Chem Phys Lipids,
93(1–2), 95–101. doi:10.1016/S0009-3084(98)00032-2.
pingoud a and jeltsch a (2001), ‘Structure and function of type II restriction endo-
nucleases’, Nucleic Acids Res, 29(18), 3705–3727.
pingoud a, alves j and geiger r (1993), ‘Restriction enzymes’, Methods Mol Biol,
16, 107–200.
pingoud a, fuxreiter m, pingoud v and wende w (2005), ‘Type II restriction endo-
nucleases: structure and mechanism’, Cell Mol Life Sci, 62(6), 685–707. doi:
10.1007/s00018-004-4513-1.
powell k a, ramer s w, del cardayre s b, stemmer w p, tobin m b, longchamp p f
and huisman g w (2001), ‘Directed evolution and biocatalysis’, Angew Chem Int
Ed, 40(21), 3948–3959. doi: 10.1002/1521-3773(20011105)40:21<3948::AID-
ANIE3948>3.0.CO;2-N.
qin y, wei x, song x and qu y (2008), ‘The role of the site 342 in catalytic
efficiency and pH optima of endoglucanase II from Trichoderma reesei as
probed by saturation mutagenesis’, Biocatal Biotransform, 26(5), 378–382. doi:
10.1080/10242420802249299.
rabhi i, guedel n, chouk i, zerria k, barbouche m r, dellagi k and fathallah
d m (2004), ‘A novel simple and rapid PCR-based site-directed mutagenesis’, Mol
Biotechnol, 26(1), 27–34. doi: 10.1385/MB:26:1:27.
roberts r j (1980), ‘Restriction and modification enzymes and their recognition
sequences’, Nucleic Acids Res, 8(4), 329–343. doi: 10.1016/0378-1119(80)90040-2.
roberts r j and macelis d (1996), ‘REBASE – Restriction enzymes and methylases’,
Nucleic Acids Res, 24(1), 223–235.
sambrook j f e and maniatis t (1989), Molecular Cloning: A Laboratory Manual,
2nd edn. New York: Cold Spring Harbor Laboratory.
sarkar g and sommer s s (1990), ‘The “Megaprimer” method of site-directed muta-
genesis’, BioTechniques, 8, 404–407.
© Woodhead Publishing Limited, 2010