Page 44 - Advances in Textile Biotechnology
P. 44
Design and engineering of novel enzymes for textile applications 23
arnau j, lauritzen c, petersen g e and pedersen j (2006), ‘Current strategies for
the use of affinity tags and tag removal for the purification of recombinant pro-
teins’, Protein Express Purif, 48(1), 1–13. doi: 10.1016/j.pep.2005.12.002.
baneyx f (1999), ‘Recombinant protein expression in Escherichia coli’, Curr Opin
Biotech, 10(5), 411–421. doi: 10.1016/S0958-1669(99)00003-8.
barik s (1995), ‘Site-directed mutagenesis by double polymerase chain reaction’,
Methods Mol Biol, 15, 277–286.
barik s and gahnski m (1991), ‘ “Megaprimer” method of PCR: increased template
concentration improves yield’, BioTechniques, 10,489–490.
becker d, braet c, brumer h, claeyssens m, divne c, fagerstrom b r, harris m, jones
t a, kleywegt g j, koivula a, mahdi s, piens k, sinnott m l, stahlberg j, teeri t
t, underwood m and wohlfahrt g (2001), ‘Engineering of a glycosidase family
7 cellobiohydrolase to more alkaline pH optimum: the pH behavior of Tricho-
derma reesei Cel7A and its E223S/A224H/L225V/T226A/D262G mutant’,
Biochem J, 356, 19–30.
ben ali m, khemakhem b, robert x, haser r and bejar s (2006), ‘Thermostability
enhancement and change in starch hydrolysis profile of the maltohexaose-
forming amylase of Bacillus stearothermophilus US100 strain’, Biochem J, 394,
51–56. doi:10.1042/BJ20050726.
ben ali m, mhiri s, mezghani m and bejar s (2001), ‘Purification and sequence
analysis of the atypical maltohexaose-forming α-amylase of the B. stearother-
mophilus US100’, Enzyme Microb Technol, 28(6), 537–542. doi:10.1016/S0141-
0229(01)00294-0.
berry m j, davis p j and gidley m j (2001), ‘Conjugated polysaccharide fabric deter-
gent and conditioning products’, United States Patent 6225462.
bickle t a and kruger d h (1993), ‘Biology of DNA restriction’, Microbiol Rev,
57(2), 434–450.
biedendieck r, gamer m, jaensch l, meyer s, rohde m, deckwer w d and jahn d
(2007), ‘A sucrose-inducible promoter system for the intra and extracellular
protein production in Bacillus megaterium’, J Biotechnol, 132(4), 426–430. doi:
10.1016/j.jbiotec.2007.07.494.
bloom j d, meyer m m, meinhold p, otey cr, macmillan d and arnold f h (2005),
‘Evolving strategies for enzyme engineering’, Curr Opin Struct Biol, 15, 447–452.
doi: 10.1016/j.sbi.2005.06.004.
bornscheuer u t (2002), ‘Microbial carboxyl esterases: classifi cation, properties
and application in biocatalysis’, FEMS Microbiol Rev, 26(1), 73–81. doi: 10.1111/
j.1574-6976.2002.tb00599.x.
bromme d, peters k, fi nk s and fi ttkau s (1986), ‘Enzyme substrate interactions in
the hydrolysis of peptide-substrates by thermitase subtilisin BPN′ and Proteinase-
K’, Arch Biochem Biophys, 244(2), 439–446. doi:10.1016/0003-9861(86)90611-9.
brosnan m p, kelly c t and fogarty w m (1992), ‘Investigation of the mechanisms
of irreversible thermoinactivation of Bacillus stearothermophilus α-amylase’, Eur
J Biochem/FEBS, 203(1–2), 225–231.
bryan p n (2000), ‘Protein engineering of subtilisin’, Biochim Biophys Acta, 1543(29),
203–222. doi:10.1016/S0167-4838(00)00235-1.
bryan p n, rollence m l, pantoliano m w, wood j, fi nzel b c, gilliland g l, howard
a j and poulos t l (1986), ‘Proteases of enhanced stability: characterization of a
thermostable variant of subtilisin’, Proteins Struct Funct Genet, 1(4), 326–334.
© Woodhead Publishing Limited, 2010