Page 103 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 103

3.3 Chemical Kinetics and Chemical Equilibrium                  77

              In the combustion products, for a mole of CO, there are b mole of NO, c mole of
            CO 2 , d mole of O 2 and e mole of N 2 , therefore, the mole fraction of the species in
            the combustion products can be determined as

                         a                    b                      c
             y CO ¼              ; y NO ¼              ; y CO 2  ¼
                  a þ b þ c þ d þ e     a þ b þ c þ d þ e     a þ b þ c þ d þ e
                                    d                    e
                            ¼                   ¼
                        y O 2                ; y N 2
                              a þ b þ c þ d þ e    a þ b þ c þ d þ e
                                                              1
              From the equilibrium chemical reaction CO 2 $ CO þ = 2O 2 , the chemical
            equilibrium constant at 1 atm is

                                1=2    1=2
                            y co   y  ad
                                O 2                        1=2
                     K P1 ¼        ¼      ð a þ b þ c þ d þ eÞ  ¼ 0:3273    ð4Þ
                                       c
                             y CO 2
              Similarly, for the second equilibrium reaction ½ O 2 + ½ N 2 $ NO, its equi-
            librium constant
                                                b
                                      y NO
                              K P2 ¼  1=2 1=2  ¼  1=2 1=2  ¼ 0:1222         ð5Þ
                                    y  y     d  e
                                     O 2  N 2
              From Eqs. (1)–(3), we can get

                                     c ¼ 1   a
                                     d ¼ 1=2ð1 þ a   bÞ
                                     e ¼ 1=2ð1   bÞ

              Put them into (4) and (5), we can get

                                                1=2
                                  a   1 þ a   b
                                                                             0
                                                  ¼ 0:3273                 ð4 Þ
                                1   a   4 þ a
                                        2b
                                                   ¼ 0:1222                ð5 Þ
                                                                             0
                                                1=2
                               ½ ð1 þ a   bÞð1   bފ
              Solving Eqs. (4′) and (5′) we get
                 a ¼ 0:3745  b ¼ 0:0675  c ¼ 0:6255 d ¼ 0:6535  e ¼ 0:4663
   98   99   100   101   102   103   104   105   106   107   108