Page 550 - Aircraft Stuctures for Engineering Student
        P. 550
     12.8 Finite element method for continuum structures  531
               whence, from either of Eqs (v) or (vi)
                                            a'  = -0.000125                        (viii)
               Adding Eqs (i) and (ii)
                                            CY1  - a3 = 0.002
               Adding Eqs (iii) and (iv)
                                           CX~ + a3  = -0.0015
               Then adding Eqs (ix) and (x)
                                             (~1 = 0.00025
               and, from either of Eqs (ix) or (x)
                                            a3  = -0.00175                         (xii)
               The second of Eqs (12.96) is used to determine a5, Q6, a7, (Yg in an identical manner to
               the above. Thus
                                            a5 = -0.001
                                            06 = 0.00025
                                            a7  = 0.002
                                            a8  = -0.00025
               Now substituting for q, CX~, . . . , Qg  in Eqs (12.96)
                             ui = 0.00025 - 0.000125~ - 0.00175~ - 0.000625~~
               and
                               ~j  = -0.001 + 0.00025~ + 0.002~ - 0.00025~~
               Then, from Eqs (12.88)
                                   au
                              Ex=--   - -0.000125  - 0.000625j~
                                   ax
                                   av
                              E,.  = - = 0.002 - 0.00025~
                                   aY
                                   au  av
                             yxy  = - + - = -0.0015  - 0.000625~ - 0.00025~
                                   ay  ax
               Therefore, at the centre of the element (x = 0, y = 0)
                                            E,  = -0.000125
                                            E).  = 0.002
                                            rx,, = -0.0015
               so that, from Eqs (12.92)
                               E
                                              2ooooo (-0.000125 + (0.3 x 0.002))
                           = -(E.y    + V&J  = -
                             1-9              1-0.3'





