Page 155 - MarceAlgebra Demystified
P. 155

142                                                 CHAPTER 6 Factoring



                        This shortcut can help you identify quadratic polynomials that do not factor
                        ‘‘nicely’’ without spending too much time on them. The next three examples
                        are quadratic polynomials that do not factor ‘‘nicely.’’
                              2
                                            2
                                                              2
                             x þ x þ 1     x þ 14x þ 19      x   5x þ 10
                                                                  2
                                                              2
                           Quadratic polynomials of the form x   c are called the difference of two
                                                                      2
                                                                 2
                                                             2
                                                                                2
                        squares. We can use the shortcut on x   c ¼ x þ 0x   c . The factors of
                         2
                        c must have a difference of 0. This can only happen if they are the same, so
                                       2
                        the factors of c we want are c and c.
                             Examples
                              2                                   2
                             x   9 ¼ðx   3Þðx þ 3Þ               x   100 ¼ðx   10Þðx þ 10Þ
                              2                                        2
                             x   49 ¼ðx   7Þðx þ 7Þ              16   x ¼ð4   xÞð4 þ xÞ
                                                 2
                                                        2
                        When the sign between x and c is plus, the quadratic cannot be factored
                        using real numbers.
                             Practice


                                  2
                             1: x   4 ¼
                                  2
                             2: x   81 ¼
                                  2
                             3: x   25 ¼
                                  2
                             4: x   64 ¼
                                  2
                             5: x   1 ¼
                                  2
                             6: x   15 ¼
                                      2
                             7: 25   x ¼



                             Solutions

                                  2
                             1: x   4 ¼ðx   2Þðx þ 2Þ
                                  2
                             2: x   81 ¼ðx   9Þðx þ 9Þ
   150   151   152   153   154   155   156   157   158   159   160