Page 158 - MarceAlgebra Demystified
P. 158

CHAPTER 6 Factoring                                                          145



                       12        6      6         3       3      6
                 10: x   1 ¼ðx   1Þðx þ 1Þ¼ðx   1Þðx þ 1Þðx þ 1Þ
                                      2
                                                                                2
            When the first term is not x , see if you can factor out the coefficient of x .If
                                                                       2
            you can, then you are left with a quadratic whose first term is x . For example
                           2
            each term in 2x þ 16x   18 is divisible by 2:
                    2
                                     2
                 2x þ 16x   18 ¼ 2ðx þ 8x   9Þ¼ 2ðx þ 9Þðx   1Þ.
                 Practice

                       2
                 1: 4x þ 28x þ 48 ¼

                       2
                 2: 3x   9x   54 ¼
                       2
                 3: 9x   9x   18 ¼
                        2
                 4: 15x   60 ¼
                       2
                 5: 6x þ 24x þ 24 ¼


                 Solutions


                       2                2
                 1: 4x þ 28x þ 48 ¼ 4ðx þ 7x þ 12Þ¼ 4ðx þ 4Þðx þ 3Þ
                       2               2
                 2: 3x   9x   54 ¼ 3ðx   3x   18Þ¼ 3ðx   6Þðx þ 3Þ
                       2               2
                 3: 9x   9x   18 ¼ 9ðx   x   2Þ¼ 9ðx   2Þðx þ 1Þ
                        2            2
                 4: 15x   60 ¼ 15ðx   4Þ¼ 15ðx   2Þðx þ 2Þ
                       2                2                                     2
                 5: 6x þ 24x þ 24 ¼ 6ðx þ 4x þ 4Þ¼ 6ðx þ 2Þðx þ 2Þ¼ 6ðx þ 2Þ
                                  2
            The coefficient of the x term will not always factor away. In order to factor
                                  2
            quadratics such as 4x þ 8x þ 3 you will need to try all combinations of
            factors of 4 and of 3: ð4x þ  Þðx þ  Þ and ð2x þ   Þð2x þ   Þ. The blanks
            will be filled in with the factors of 3. You will need to check all of the
            possibilities: ð4x þ 1Þðx þ 3Þ, ð4x þ 3Þðx þ 1Þ, and ð2x þ 1Þð2x þ 3Þ:



                 Example

                    2
                 4x   4x   15
   153   154   155   156   157   158   159   160   161   162   163