Page 156 - MarceAlgebra Demystified
P. 156

CHAPTER 6 Factoring                                                          143



                      2
                 3: x   25 ¼ðx   5Þðx þ 5Þ
                      2
                 4: x   64 ¼ðx   8Þðx þ 8Þ
                      2
                 5: x   1 ¼ðx   1Þðx þ 1Þ
                                   p        p
                      2              ffiffiffiffiffi    ffiffiffiffiffi
                 6: x   15 ¼ðx       15Þðx þ  15Þ
                          2
                 7: 25   x ¼ð5   xÞð5 þ xÞ
                                                                     n
                                                                n
            The difference of two squares can come in the form x   c where n is any
                                                   n
                                              n
            even number. The factorization is x   c ¼ðx n=2    c n=2 Þðx n=2  þ c n=2 Þ. [When
                          n
                      n
            n is odd, x   c can be factored also but this factorization will not be covered
            here.]
                 Examples

                  6        6    6     3      3
                 x   1 ¼ x   1 ¼ðx   1Þðx þ 1Þ
                        4    4   4     2    2  2    2         2      2
                  16   x ¼ 2   x ¼ð2   x Þð2 þ x Þ¼ð4   x Þð4 þ x Þ
                                              2
                         ¼ð2   xÞð2 þ xÞð4 þ x Þ
                     4          4    4     2        2                         2
                 16x   1 ¼ð2xÞ   1 ¼ð4x   1Þð4x þ 1Þ¼ð2x   1Þð2x þ 1Þð4x þ 1Þ
                                    6

                       1         1           1        1
                  6         6             3       3
                 x       ¼ x         ¼ x         x þ
                      64         2           2        2
                            10
                                        5
                                               5
                  10
                 x   1 ¼ x   1   10  ¼ðx   1Þðx þ 1Þ
                   8        8   8     4      4         2       2      4
                  x   1 ¼ x   1 ¼ðx   1Þðx þ 1Þ¼ ðx   1Þðx þ 1Þðx þ 1Þ
                                         2      4
                        ¼ðx   1Þðx þ 1Þðx þ 1Þðx þ 1Þ
                 Practice

                       4
                  1: x   1 ¼

                       8
                  2: x   16 ¼
                           1
                       8
                  3: x       ¼
                          16
   151   152   153   154   155   156   157   158   159   160   161