Page 95 - MarceAlgebra Demystified
P. 95

82                                  CHAPTER 5 Exponents and Roots



                                  2       2    3
                             5: ðx   1Þðx   1Þ ¼
                                             2
                             6:  ð 16x   4Þ 5  ¼



                             Solutions

                                    2        3      2        3
                                 ð5x þ x þ 1Þ    ð5x þ x þ 1Þ       2        3 1
                              1:               ¼               ¼ð5x þ x þ 1Þ
                                     2
                                  5x þ x þ 1     ð5x þ x þ 1Þ 1
                                                    2
                                                                    2        2
                                                               ¼ð5x þ x þ 1Þ
                                    9
                                 ð7xÞ       9 3      6
                             2:       ¼ð7xÞ    ¼ð7xÞ
                                    3
                                 ð7xÞ
                                        0
                             3: ð2x   5Þ ¼ 1
                                       11      6         11þ6         17
                             4: ðx þ 1Þ ðx þ 1Þ ¼ðx þ 1Þ     ¼ðx þ 1Þ
                                  2       2    3     2    1  2    3     2    1þ3     2    4
                             5: ðx   1Þðx   1Þ ¼ðx   1Þ ðx   1Þ ¼ðx   1Þ         ¼ðx   1Þ
                                          5 2           ð5Þð2Þ         10
                             6: ðð16x   4Þ Þ ¼ð16x   4Þ     ¼ð16x   4Þ



            Adding/Subtracting Fractions



                        When adding fractions with variables in one or more denominators, the LCD
                        will have each variable (or algebraic expression) to its highest power as a
                                                          1    1   1    1
                                                                             2 3
                        factor. For example, the LCD for   2  þ þ   3  þ  2  is x y .
                                                          x    x   y   y
                             Examples

                              4   3    4   3 x    4   3x    4   3x
                                    ¼          ¼         ¼
                             x 2  x   x 2  x x    x 2  x 2    x 2
                              13    6   13 z     6 xy     13z   6xy    13z   6xy
                                      ¼                ¼             ¼
                                                                            2
                                                           2
                                                                  2
                             xy 2  yz   xy 2  z  yz xy   xy z   xy z      xy z
   90   91   92   93   94   95   96   97   98   99   100