Page 40 - Algorithm Collections for Digital Signal Processing Applications using MATLAB
P. 40

28                                                          Chapter 1

                     b)  Between Input layer and Hidden layer

                     w 11 (n+1) = w 11 (n) + γ H * e* i 1
                     w 21 (n+1) = w 21 (n) + γ H * e * i 2
                     w 31 (n+1) = w 31 (n) + γ H * e * i 3

                     ‘e’ is the estimated error at the hidden layer using the actual error
                     computed in the output layer

                     (i.e.)  e = h 1 * (1-h1)* [(t 1-o 1) + (t 2-o 2)]

           Step 5: Adjustment of Bias


                                     b h (n+1)= b h (n) +e* γ H

                                     b 1 (n+1) = b 1 (n) + (t 1-o 1)* γ O
                                     b 2 (n+1) = b 2 (n) + (t 2-o 2)* γ O

           Step 6:  Repeat  step  3  to  step  5  for  all  the  pairs  of  input  vector  and  the
                  corresponding desired target vector one by one.
           Step 7:  Let d 1, d 2  d 3  …d n   be the set of desired vectors and y 1, y 2 y 3 y n  be the
                  corresponding output vectors  computed using the  latest updated
                  weights and bias vectors. The sum squared error is calculated as

                                            2
                                                    2
                                                                2
                                   2
                          2
              SSE= (d 1- y 1)  + (d 2- y 2) +(d 3- y 3)  +(d 4- y 4) + … (d n- y n)

           Step 8: Repeat the steps 3 to 7 until the particular SSE is reached.

              Note if  momentum is included during  training updating equations are
           modified as follows.

                     w 11’(n+1) = w 11’(n) + γ O (t 1-o 1) *h 1  + ρo * Δw 11’(n)



                                                                Δw 11’(n+1)


                     w 12’(n+1) = w 12’(n) + Δw 12’(n+1) +   ρo * Δw 12(n)
                       w 11 (n+1) = w 11 (n) +  Δw 1(n+1) +   ρ H * Δw 11(n)
                     w 21 (n+1) = w 21 (n) +  Δw 21(n+1) +   ρ H * Δw 21(n)
   35   36   37   38   39   40   41   42   43   44   45