Page 70 - Algorithm Collections for Digital Signal Processing Applications using MATLAB
P. 70

58                                                         Chapter  2

                                        [X]=[B][U][Z]



                                        [B][U][Z]=[X]


                                                 -1
                                     [B][U][B][B] [Z]=[X]


                                                      -1
                                    [A][Z]={[B][U][B]} [X]


                                       Note that A=[B] -1



                 Column vectors of the transformation matrix [U] are orthonormal to
                                                    T
                                  each other. (ie) [U]  =  [U] -1
                                        T
                                If E [XX ] = [I] (Identity Matrix)
               ((i.e.) Covariance matrix of the Independent signals with mean zero and
                               variance one is Identity matrix )

                  Computing Covariance Matrix of the RHS of the equation

                                                    -1
                                  [A][Z]={[B][U][B]} [X]

                                                            -1
                                                                 T
                                          -1
                           E [({[B][U][B]} [X])  ({[B][U][B]} [X]) ]
                                          -1
                                                   T
                                                                -1 T
                          = E [({[B][U][B]} ) [X] [X] ({[B][U][B]} )  ]
                                         -1
                                                  T
                                                                -1 T
                            = ({[B][U][B]} ) E [XX ] ({[B][U][B]} )
                                                           -1 T
                                             -1
                                = ({[B][U][B]} ) ({[B][U][B]} )

                                                        -1
                                                            -1 T
                                                    -1
                                             -1
                                         -1
                                     -1
                               = ([B] [U] [B] ) ( [B] [U] [B] )
                                         -1
                                    -1
                                                      -1  T
                                                 -1 T
                                                           -1 T
                                             -1
                                =[B] [U] [B] [B ] [U ] [B ]
   65   66   67   68   69   70   71   72   73   74   75