Page 116 - Analog and Digital Filter Design
P. 116

Poles andZeroes  1 1 3






                                         I                                               i
                                  3dB
                                Freclueaey   zen,l    Zero2    Zero3     Zero4    Zero5
                          2     0.14072    10.04963
                          3     0.33229     3.47501
                          4     0.49672     2.17910   5.26081
                          5     0.6 1882    1.69913   2.74925
                          6     0.70627     1.46583   2.00236   5.47055
                          7     0.76901     1.33382   1.66325   2.99707
                          8     0.81470     1.25149   1.47623   2.20934   6.29166
                          9     0.84865     1.19652   1.36063   1.833 18   3.44524
                         10     0.87438     1.15793   1.28357   1.61740   2.51915   7.31086

                      TaMe 3.20
                      Inverse Chebyshev Zero Locations with 3dB Bandwidth and 40dB Stopband
                      Attenuation





                      in a circular pattern, with the axes centered on the real axes of the S-plane. As
                      the pole positions move left along the real axis, their imaginary coordinate com-
                      ponent increases rapidly to start with, but then slows as it reaches a maximum
                      value.  Moving  further  left,  the  pole’s  imaginary coordinate  decreases again
                      and approaches the negative real axis. One pole of an odd-order filter is on the
                      negative real axis.


                      For those of you not wishing to use values normalized for a 3dB cutoff point,
                      Tables 3.21 to 3.23 give pole locations for the natural (normalized to stopband)
                      Inverse Chebyshev responses. The tables give values for filters with 20dB, 30dB,
                      and 40dB stopband attenuation, respectively.

                      Zero  locations have  been  found  using  the  equations given  in  the Appendix.
                      These are listed in Table 3.24 for the natural (normalized to stopband) Inverse
                      Chebyshev response.
   111   112   113   114   115   116   117   118   119   120   121