Page 138 - Analysis and Design of Energy Geostructures
P. 138
110 Analysis and Design of Energy Geostructures
Table 3.11 Hydraulic conductivity of materials characterising energy geostructures.
Material type Material Hydraulic conductivity, k [m/s]
21 23
Soils Gravel 10 10
22
Cleaned sands (coarse grained) 10 10 24
24
Sand (mixed) 10 5 10 25
Fine sand 5 3 10 24 to 10 25
25
Silty sand 2 3 10 10 26
25
Silt 10 10 28
28
Clay 10 10 210
Rock Sandstone 10 210 10 212
(laboratory Siltstone 10 210 10 211
213 212
testing) Granite 5 3 10 2 3 10
Slate 7 3 10 213 1.6 3 10 212
213 212
Brèche 7 3 10 4.6 3 10
Calcite 7 3 10 212 9.3 3 10 210
Limestone 7 3 10 212 1.2 3 10 29
Dolomite 4.6 3 10 211 1.2 3 10 210
29
Sandstone 1.6 3 10 1.2 3 10 27
29
Strong argillite 6 3 10 2 3 10 28
26
Black schist (fissured) 6 3 10 3 3 10 26
Fine sandstone 2 3 10 29
Olithique rock 1.3 3 10 28
27 29
Bradford sandstone 2.2 3 10 6 3 10
25
Glenrose sandstone 1.5 3 10 1.3 3 10 26
27 27
Altered sandstone 0.6 3 10 1.5 3 10
Rock mass (in Migmatite 3.3 3 10 26
situ) Gneiss and clayey schist 0.7 3 10 27
25
Gneiss 1.2 3 10 1.9 3 10 25
25
Pegmatoïde granite 1.2 3 10 0.6 3 10 25
24
Lignite 1.7 3 10 23.9 3 10 24
24
Sandstone 1.7 3 10 23.9 3 10 24
24
Argillite 1.7 3 10 23.9 3 10 24
24
Eocene limestone 1.7 3 10 23.9 3 10 24
26
Impermeable rock with 0.1 mm 8 3 10
discontinuities at 1 m intervals
29 212
Concrete Concrete 10 10
Source: Data from Vulliet, L., Laloui, L., Zhao, J., 2016. Mécanique des sols et des roches (TGC volume 18): avec
écoulements souterrains et transferts de chaleur. PPUR Presses polytechniques, after Silin-Bekchurin, A., 1958.
Dynamics of Underground Water. Moscow Izdat, Moscow University, Moscow.
where T is the absolute temperature expressed in Kelvin. As the dynamic viscosity of
water decreases for an increase in temperature, the hydraulic conductivity of soils
increases for increasing temperature values (Burghignoli et al., 2000; Towhata et al.,
1993). This phenomenon yields to higher flow velocities and greater groundwater