Page 404 - Applied Numerical Methods Using MATLAB
P. 404

PROBLEMS   393

                                    x − y = c w  w =  1  (x − y)  =  x − y
                                                c       x − y
                                                            2
                                            m
                                      x           y
                                          x = y
                                  Figure P8.4 Householder reflection.



                                                (P8.4.1)
                    (i)           y = x − (x − y)  =  x − cw           (P8.4.2a)

                                        (P8.4.1)
                                    T
                   (ii)           w w    =    1and ||x|| = ||y||       (P8.4.2b)
                   (iii)           m = (x + y)/2 = x − (c/2)w          (P8.4.2c)

                   (iv) The mean vector m of x and y is orthogonal to the difference vector
                       w = (x − y)/c.
                       Thus we have

                                                T
                                                          T
                                                                 T
                         T
                        w (x − (c/2)w) = 0;   w x − (c/2)w w = w x − (c/2) = 0
                                                                        (P8.4.3)
                       This gives an expression for c =||x − y|| 2 as
                                                          T
                                          c =||x − y|| 2 = 2w x         (P8.4.4)
                       We can substitute this into (P8.4.2a) to get the desired result.

                                                            T
                                               T
                           y = x − cw = x − 2ww x = [I − 2ww ]x ≡ Hx    (P8.4.5)
                       On the other hand, the Householder transform matrix is an orthog-
                       onal matrix, since
                                                        T
                                                                  T
                                    T
                                  H H = HH = [I − 2ww ][I − 2ww ]
                                                         T
                                                 T
                                       = I − 4ww + 4ww ww    T
                                                 T       T
                                       = I − 4ww + 4ww = I              (P8.4.6)
               (b) Householder Transform
                   In order to show that the Householder matrix can be used to zero-out
                   some part of a vector, let us find the kth Householder matrix H k trans-
                   forming any vector


                           x = x 1  ·· ·  x k−1  x k  x k+1  ·· · x N   (P8.4.7)
   399   400   401   402   403   404   405   406   407   408   409