Page 159 - Applied Probability
P. 159

8. The Polygenic Model
                              144
                                                                            −1 ∂
                                                             ∂
                                                               ln det B = tr(B
                              (h) If B is a square matrix, then
                                                            ∂θ
                                   is validated by
                                                ∂
                                                                    ∂

                                                  ln det B
                                                           =
                                                                                 b ij
                                               ∂θ
                                                                               ∂θ
                                                               ij  ∂b ij  ln det B   ∂θ ∂ B). This formula
                                                              	   B ij  ∂
                                                           =             b ij
                                                                  det B ∂θ
                                                               ij
                                                                      ∂
                                                           =tr B   −1   B
                                                                     ∂θ
                                   using property (a).
                                Applying the above facts to the loglikelihood (8.2) leads to the score.
                              With respect to the mean component µ i , we have
                                     ∂        1     ∂    t  −1         1        t  −1  ∂
                                       L =       A    µ Ω   (y − Aµ)+ (y − Aµ) Ω    A    µ
                                    ∂µ i      2   ∂µ i                 2              ∂µ i
                                                ∂      t  −1
                                                      t
                                          =        µ A Ω   (y − Aµ).
                                               ∂µ i
                                                                    2
                              With respect to the variance component σ , we have
                                                                   i
                                      ∂          1 ∂            1        t  ∂  −1
                                        L = −         ln det Ω − (y − Aµ)    Ω   (y − Aµ)
                                     ∂σ 2        2 ∂σ 2         2        ∂σ 2
                                       i             i                      i
                                                 1    −1      1        t  −1  −1
                                            = − tr(Ω     Γ i )+ (y − Aµ) Ω  Γ i Ω  (y − Aµ).
                                                 2            2
                              In similar fashion, the elements of the observed information matrix are
                                          ∂ 2           ∂    t  t  −1  ∂
                                      −       L =         µ A Ω    A    µ
                                        ∂µ i ∂µ j      ∂µ j          ∂µ i
                                          ∂ 2           ∂    t  t  −1  −1
                                      −   2   L =         µ A Ω    Γ i Ω  (y − Aµ)
                                        ∂σ ∂µ j        ∂µ j
                                          i
                                                         ∂ 2
                                                  = −        2  L
                                                       ∂µ j ∂σ
                                                             i
                                          ∂ 2           1    −1   −1
                                      −   2  2  L = −    tr(Ω  Γ i Ω  Γ j )
                                        ∂σ ∂σ           2
                                          i  j
                                                        1       t  −1   −1    −1
                                                     + (y − Aµ) Ω    Γ i Ω  Γ j Ω  (y − Aµ)
                                                        2
                                                        1       t  −1   −1    −1
                                                     + (y − Aµ) Ω    Γ j Ω  Γ i Ω  (y − Aµ)
                                                        2
                                                        1    −1   −1
                                                  = −    tr(Ω  Γ i Ω  Γ j )
                                                        2
                                                               t
                                                     +(y − Aµ) Ω −1 Γ i Ω −1 Γ j Ω −1 (y − Aµ).
   154   155   156   157   158   159   160   161   162   163   164