Page 163 - Applied Probability
P. 163

148
                              covariance operator, we deduce that
                                              Cov(X i ,Y j )=Cov(Y i ,X j )
                              where   8. The Polygenic Model  =2Φ ij σ axy +∆ 7ij σ dxy ,  (8.8)
                                                           1  2     2    2
                                                        =    (σ  − σ  − σ )
                                                  σ axy       az    ax   ay
                                                           2
                                                           1  2     2    2
                                                        =    (σ  − σ  − σ )
                                                  σ dxy       dz    dx   dy
                                                           2
                              are additive and dominance cross covariances, respectively.
                                It is helpful to collect the covariances (8.8) into a single variance matrix.
                              Notationally and computationally, the key is the matrix Kronecker product
                              [16, 30]. Let A =(a ij )bean r × s matrix and B =(b ij )an t × u matrix.
                              The Kronecker product A ⊗ B is the rt × su block matrix
                                                            a 11 B  ··· a 1s B
                                                                           
                                                              .    .     .
                                               A ⊗ B   =     . .   . .  . .    .
                                                            a r1 B  ···  a rs B
                              Problem 8 explores some of the many theoretical properties of Kronecker
                              products. Given the Kronecker product construction, the covariances can
                              be collectively expressed as
                                              
ø
                                                X
                                          Var
                                                Y

                                               2Φ 0             0  2Φ      2   0   0
                                           2
                                       = σ ax          + σ axy          + σ ay
                                                0   0          2Φ   0          02Φ

                                          + σ 2 dx  ∆ 7  0  + σ dxy  0  ∆ 7  + σ 2 dy  0  0  (8.9)
                                                  0   0          ∆ 7  0          0∆ 7
                                               2                  2
                                              σ ax  σ axy        σ     σ dxy
                                       =2            2   ⊗ Φ+     dx    2    ⊗ ∆ 7 .
                                             σ axy  σ ay         σ dxy  σ dy
                                The covariance representation (8.9) carries over to two traits determined
                              by multiple loci if each locus contributes additively to each trait. Random
                              measurement error can also be incorporated in this scheme if the covariance
                              matrix (8.9) is amended to include the further terms
                                                                               2
                                      I  0          0 I       2  00           σ ex  σ exy
                                  2
                                 σ ex       + σ exy       + σ ey         =           2   ⊗ I.
                                      0  0          I  0         0 I         σ exy  σ ey
                              Finally, if we desire to model common household effects, then we tack on
                              the additional terms
                                                                                2
                                    H   0          0   H      2   0  0         σ    σ hxy
                                2
                               σ hx        + σ hxy         + σ hy         =     hx    2    ⊗ H,
                                    0   0          H   0          0 H          σ hxy  σ
                                                                                      hy
   158   159   160   161   162   163   164   165   166   167   168