Page 171 - Applied Probability
P. 171

8. The Polygenic Model
                              156
                              recurrence
                                                                         1
                                                         1
                                                                          Cov(X l ,X j )
                                                                                          (8.13)
                                         Cov(X i ,X j )=
                                                           Cov(X k ,X j )+
                                                                         2
                                                         2
                              is precisely the recurrence obeyed by ordinary kinship coefficients.
                                Calculation of variances is a little more complicated. If i is a founder,
                              then the binomial distribution (8.12) implies Var(X i )=2n.If i has parents
                              k and l, then
                                     Var(X i )=E[Var(X i | X k ,X l )] + Var[E(X i | X k ,X l )]
                                              = E[Var(Y k→i | X k ,X l )] + E[Var(Y l→i | X k ,X l )]
                                                       1
                                                 + Var[ (X k + X l )]
                                                       2
                                              = E[Var(Y k→i | X k )] + E[Var(Y l→i | X l )]  (8.14)
                                                   1           1              1
                                                 +   Var(X k )+  Cov(X k ,X l )+  Var(X l ).
                                                   4           2              4
                                To make further progress, we must compute E[Var(Y k→i | X k )]. With
                              this end in mind, suppose we label the 2n polygenes of k by the numbers
                              1,... , 2n, and let W m be +1 or −1 according as the mth polygene of
                              k is positive or negative. If we also let A m be the event that the mth
                              polygene of k is sampled in forming the gamete contribution Y k→i , then
                                      2n                  2n
                              X k =       W m and Y k→i =         W m . A moment’s reflection shows

                                      m=1                 m=1  1 A m
                                          )=  1  and that
                              that Var(1 A r
                                             4
                                                                   2n−2

                                                                    n−2    1
                                                            )  =       −
                                                                    2n     4
                                                 Cov(1 A r  , 1 A s
                                                                     n
                                                                        1
                                                               = −          .
                                                                    4(2n − 1)
                                                             t
                              Conditional on W =(W 1 ,... ,W 2n ) , we therefore calculate that
                               Var(Y k→i | X k )=Var(Y k→i | W)
                                                                                            + 2
                                                                                   *
                                                                 2n                   2n

                                                   1      1      	     2      1
                                              =      +              W −                 W m
                                                                      m
                                                   4   4(2n − 1)          4(2n − 1)
                                                                 m=1                 m=1

                                                   1      1              1      2
                                              =      +           2n −         X k
                                                   4   4(2n − 1)     4(2n − 1)
                              and consequently that
                                                        1       1              1

                                  E[Var(Y k→i | X k )] =  +           2n −          Var(X k ).
                                                        4   4(2n − 1)      4(2n − 1)
                              Substituting this and a similar expression for E[Var(Y l→i | X l )] in equation
                              (8.14) produces the recurrence

                                                  1      1          1        1
                                    Var(X i )  =   +           2n +    1 −        Var(X k )
                                                  2  2(2n − 1)      4      2n − 1
   166   167   168   169   170   171   172   173   174   175   176