Page 173 - Applied Probability
P. 173

8. The Polygenic Model
                              158

                                                       2
                                            1






                                                                         ♦
                              3           4       5       6       7       8      9          10
                                   ♦                                                  ♦
                                    11                                                 12
                                   FIGURE 8.2. Risk Prediction Under the Polygenic Threshold Model
                                   TABLE 8.3. Recurrence Risks for the Unborn Children in Figure 8.1
                                         Polygenes 2n   Child 8   Child 11  Child 12
                                              10          .326      .081       .054
                                              20          .349      .104       .057
                                              30          .354      .111       .058
                                              40          .357      .115       .058
                                              50          .358      .117       .058

                              8.11 Problems

                                                        ˆ
                                 1. Suppose that A i ˆ µ and Ω i are the mean vector and covariance ma-
                                   trix for the ith of s pedigrees evaluated at the maximum likelihood
                                   estimates. Under the multivariate normal model (8.1), show that
                                               s                               s
                                              	    i       t ˆ −1  i
                                                 (Y − A i ˆ µ) Ω i  (Y − A i ˆ µ)=  m i ,
                                              i=1                             i=1
                                                                                   i
                                   where m i is the number of entries of the trait vector Y [15]. Hint:
                                                        r
                                                       	    2  ∂
                                                          ˆ σ k  2  L(ˆ γ)=0.
                                                             ∂σ
                                                       k=1     k
                                 2. In the notation of Problem 1, prove that the pedigree statistic
                                                             t
                                                                    i
                                                      i
                                                    (Y − A i µ) Ω −1 (Y − A i µ)
                                                               i
                                   has a χ 2  distribution when evaluated at the true values of µ and σ 2
                                          m i
                                   [30]. This χ 2  distribution holds approximately when the maximum
                                              m i
                                                             2
                                   likelihood estimates ˆµ and ˆσ are substituted for their true values.
                                   There is a slight dependence among the statistics
                                                                    i
                                                             t ˆ −1
                                                      i
                                                    (Y − A i ˆµ) Ω i  (Y − A i ˆµ)
   168   169   170   171   172   173   174   175   176   177   178