Page 368 - Applied Probability
P. 368

Index
                            358
                                                                    for radiation hybrid mapping,
                            Drosophila
                                                                       237
                                recombination on X chromo-
                                                                    gradient method for posterior
                                    some, 273
                                                                       mode, 246
                            Dynamic programming, 281
                                haplotyping, 198
                                                                    for allele frequency estimation,
                                multiple sequence alignment,    Empirical Bayes, 39
                                    292–293                            48
                                Needleman-Wunsch algorithm,         for haplotype frequency esti-
                                    see Needleman-Wunsch               mation, 51, 56
                                    algorithm                   Enhancer region, 342, 344
                                Smith-Waterman algorithm,       Entropy inequality, 25
                                    see Smith-Waterman al-      Environmental effect, see Quan-
                                    gorithm                            titative trait
                                                                Eocyte, 215
                                                                Episodic ataxia pedigree data, 130
                            Egg, 1
                                                                    haplotyping using descent graph
                            Electrophoresis, see Gel electrophore-
                                                                       method, 187
                                    sis
                                                                Epistasis, 123
                            Elston-Stewart algorithm, 115–117   Epoch, 170
                                for hypergeometric polygenic    Equilibrium distribution, 262
                                    model, 157                      continuous time, 210
                            EM algorithm, 23
                                                                    discrete time, 170
                                ascent property, 24–26
                                                                    Wright’s formula, 327
                                expected information, 55        Equilibrium, stable and unstable,
                                for estimating admixture pa-           10
                                    rameter, 35                 Erd¨os-R´enyi law, 311
                                for estimating allele frequen-  Ergodic condition, 170, 196
                                    cies, 26                    Ergodic theorem, 171
                                for estimating binomial pa-     Errors, genotyping, see Genotyp-
                                    rameter, 36                        ing errors
                                for estimating haplotype fre-   Eubacteria, 215
                                    quencies, 33, 55            Eukaryote, 215, 344
                                for estimating identity coef-   Evolution, neutral
                                    ficients, 110                    Kimura’s model of, 211–214
                                for estimating inbreeding co-        equilibrium distribution, 226
                                    efficients, 34                Evolution, slow versus fast, 219
                                for estimating multinomial pa-  Evolutionary parsimony, Lake’s method
                                    rameters, 37                       of, 227
                                for estimating recombination    Evolutionary trees, 203–208
                                    fractions, 34                   likelihood for, 214
                                for estimating segregation ra-      maximum parsimony, see Max-
                                    tios, 28                           imum parsimony
                                for finding binding domains,         model assumptions, 214
                                    31, 37                          possible number of, 204, 223
                                for polygenic model, 159–161        postorder traversal, 208
   363   364   365   366   367   368   369   370   371   372   373