Page 181 - APPLIED PROCESS DESIGN FOR CHEMICAL AND PETROCHEMICAL PLANTS, Volume 1, 3rd Edition
P. 181
156 Applied Process Design for Chemical and Petrochemical Plants
Greek Symbols 6. Colebrook, C. F. and White, C. M., Inst-Civil Eng., Vol. 10,
1937-1938, NO. 1, pp. 99-118.
p = Ratio of internal diameter of smaller to large pipe 7. Olujic, Z., “Compute Friction Factors Fast for Flow in Pipes,”
sizes, or for orifices or nozzles, contractions or Chem. Eng. 88, No. 25, 1981, p. 91.
enlargements 8. Churchill, S. W., ChemEng., Nov. 7, 1977, pp. 91-92.
y‘ = Kinematic viscosity, sq ft/sec 9. Connell, J. R., “Realistic Control-Valve Pressure Drops,”
y = Surface tension of liquid, dynes/centimeter Chem. Eng., 94 No. 13, 1987, p. 123.
E = Roughness factor, effective height of pipe wall irreg- 10. Shinskey, F. G., Process Control Systems, 2nd Ed., 1979,
ularities, ft, see Figure 2-1 1 McGraw-Hill Book Co., p. 4’1.
0 = Angles of divergence or convergence in enlarge- 11. Catalog 6600, Autoclave Engineers, Erie, Pa., p. 84.
ments or contractions in pipe systems, degrees 12. Saad, M. A., Compressible Fluid Flow, 1985, Prentice-Hall, Inc.,
h = Two-phase flow term to determine probable type of p. 26.
flo~7 = [ (p,/0.075) (~~/62.3)]’/~, where both liquid 13. Miller, R. W., Flow Measurement Engineering Handbook, 2nd
and gas phases are in turbulent flow (two-phase Ed., 1989, McGraw-Hill Pub. Co., pp. 13-1.
flow)
14. Cheremisinoff, N. P. and R. Gupta, Handbook of Fluids in
p = Absolute viscosity, centipoise Motion, 1983, Ann Arbor Science, p. 218.
he = Absolute viscosity, lbs (mass)/(ft) (sec) 15. McKetta, J. J., Enqclopedia of Chemical Processing and Design,
pg = Viscosity of gas or vapor phase, centipoise Vol. 22, 1985, M. Dekker, Inc., p. 305.
16. Uhl, A. E., et aL, Project NB-13, 1965, American Gas Associa-
pL = Viscosity of liquid phase, centipoise
tion New York.
p = Density of fluid, lbs/cu ft; or lb/gal, Eq. 2-113
17. Hein, M., “3P Flow Analyzer,” Oil and Gas Journal, Aug. 9,
C = Summation of items 1982, p. 132.
w = Two-phase term = (73/y) [p~ (62.3/p~)~]’/~ 18. Ryans, J. L. and Roper, D. L., Process Vacuum System, 1986,
I$ = Equations for QGTT for two-phase pipe line flow McGraw-Hill Book Co.
19. Pump Engineem’ngData, Economy Pumps, Inc., 1951, Philadel-
phia, Pa.
Subscripts
20. King, H. W., Handbook OfHydraulics, 1939, McGraw-Hill Book
Co., p. 197.
o = Base condition for gas measurement 21. Sultan, A. A., “Sizing Pipe for Non-Newtonian Flow,” Chem.
1 = Initial or upstream or inlet condition, or ii Eng., Vol. 95, No. 18, Dec. 19, 1988, p. 140.
2 = Second or downstream or outlet condition 22. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phe-
nomena, 1960, J. Wiley, New York, p. 12.
a = Initial capacity or first condition
23. Brodkey, R. S. and H. C. Hershey, Transport Phenomena, 1988,
b = New capacity or second condition
McGraw-Hill Book Co., p. 752.
g = Gas
24. Turian, R. M. and T. F. Yuan, “Flow of Slurries in Pipelines,”
L = Liquid AICHE Journal, Vol. 23, May 1977, pp. 232-243.
vc = Gradual contraction 25. Derammelaere, R. H. and E. J. Wasp, “Fluid Flow Slurry System
VE = Gradual enlargement and Pipelines,” Enqclopedia of Chemical Procasing and Design,
1985, J. J. McKetta, Exec. Ed., M. Dekker, Vol. 22, p. 373.
26. Babcock, H. A. and D. A. Carnell, “Transportation of Larger
References Inert Particles in Pipelines,” presented AICHE, 83rd Nation-
al Meeting, Paper No. 40 f, March 23, 1977, Houston, Texas.
1. Moody, L. F. “Friction Factors for Pipe Flow,” Trans. ASME, 27. Steindorff, G. N., “Adequate Slurry Pipeline Design Exists,”
Vol. 66, NOV. 1944, pp. 671-678. Oil and Gas Journal, Dec. 22, 1980, p. 75.
2. Enginemhg Data Book, 2nd Ed., 1979, Hydraulic Institute, 28. Ruskin, R. P., “Calculating Line Sizes for Flashing Steam
30200 Detroit Road, Cleveland, Ohio 44145-1967. Condensate,” Chem. Eng., Aug. 18, 1985, p. 101.
3. Crane Go. Engineering Div. Technical Paper No. 410, Flow of 29. Dukler, A. E., Wicks, M. and Cleveland, R. G., AZCHE Journal,
Fluids Through Values, Fittings and Pipe, 1976. 1964, \bl. 10, p. 44.
4. Shaw, G. V., Editor, and A. W. Loomis, Cameron Hydraulic 30. Soliman, R. H. and Collier, P. E., “Pressure Drop in Slurry
Data, 1942, Ingersoll-Rand Co., 11 Broadway, New York, N.Y., Lines,” Hydrocarbon Processing, 1990, Vol. 69, No. 11.
also see [54]. 31. Morrison, G. L., DeOtte, Jr., R. E., Panak, D. L., and Nail, G.
5. Perry, R. H. and Don Green, Perry’s ChemicalEngineer’s Hand- H., “The Flow Field Inside an Orifice Flow Meter,” Chem.
book, 6th Ed., 1984, McGraw-Hill, Inc., pp. 5-24. Eng?: Prog., 1990, Vol. 86, No. 7.