Page 181 - APPLIED PROCESS DESIGN FOR CHEMICAL AND PETROCHEMICAL PLANTS, Volume 1, 3rd Edition
P. 181

156                      Applied Process Design for Chemical and Petrochemical Plants

                               Greek Symbols                        6. Colebrook,  C.  F.  and White,  C. M., Inst-Civil Eng., Vol.  10,
                                                                      1937-1938, NO. 1, pp. 99-118.
                  p = Ratio of internal diameter of smaller to large pipe   7. Olujic, Z., “Compute Friction Factors Fast for Flow in Pipes,”
                      sizes, or for orifices or nozzles, contractions or   Chem. Eng. 88, No. 25, 1981, p. 91.
                      enlargements                                  8. Churchill, S. W., ChemEng., Nov. 7, 1977, pp. 91-92.
                  y‘  = Kinematic viscosity, sq ft/sec              9. Connell, J. R.,  “Realistic Control-Valve   Pressure  Drops,”
                  y = Surface tension of liquid, dynes/centimeter     Chem. Eng., 94 No. 13, 1987, p. 123.
                  E  = Roughness factor, effective height of pipe wall irreg-   10. Shinskey,  F.  G.,  Process  Control  Systems,  2nd  Ed.,  1979,
                      ularities, ft, see Figure 2-1  1                McGraw-Hill Book Co., p. 4’1.
                  0 = Angles of divergence or convergence in enlarge-   11. Catalog 6600, Autoclave Engineers, Erie, Pa., p. 84.
                      ments or contractions in pipe systems, degrees   12. Saad, M. A.,  Compressible Fluid Flow,  1985, Prentice-Hall, Inc.,
                  h = Two-phase flow term to determine probable type of   p. 26.
                      flo~7 = [ (p,/0.075)  (~~/62.3)]’/~, where both liquid   13. Miller,  R.  W.,  Flow  Measurement Engineering  Handbook,  2nd
                      and gas phases are in turbulent flow (two-phase   Ed., 1989, McGraw-Hill Pub. Co., pp. 13-1.
                      flow)
                                                                   14. Cheremisinoff,  N.  P.  and R.  Gupta, Handbook  of  Fluids  in
                  p = Absolute viscosity, centipoise                  Motion, 1983, Ann Arbor Science, p. 218.
                  he = Absolute viscosity, lbs (mass)/(ft) (sec)   15. McKetta, J. J., Enqclopedia  of  Chemical Processing and Design,
                  pg = Viscosity of gas or vapor phase, centipoise    Vol. 22, 1985, M. Dekker, Inc., p. 305.
                                                                   16. Uhl, A. E., et aL, Project NB-13, 1965, American Gas Associa-
                  pL = Viscosity of liquid phase, centipoise
                                                                      tion New York.
                  p = Density of fluid, lbs/cu ft; or lb/gal,  Eq. 2-113
                                                                   17. Hein, M.,  “3P Flow Analyzer,” Oil and  Gas Journal, Aug.  9,
                  C = Summation of items                              1982, p. 132.
                  w = Two-phase term = (73/y)  [p~ (62.3/p~)~]’/~   18. Ryans, J. L. and Roper, D.  L., Process  Vacuum System,  1986,
                   I$ = Equations for QGTT for two-phase pipe line flow   McGraw-Hill Book Co.
                                                                   19. Pump Engineem’ngData, Economy Pumps, Inc., 1951, Philadel-
                                                                      phia, Pa.
                                  Subscripts
                                                                   20. King, H. W., Handbook OfHydraulics, 1939, McGraw-Hill Book
                                                                      Co., p. 197.
                   o = Base condition for gas measurement          21. Sultan, A.  A.,  “Sizing Pipe for Non-Newtonian  Flow,” Chem.
                   1 = Initial or upstream or inlet condition, or ii   Eng.,  Vol. 95, No. 18, Dec. 19, 1988, p. 140.
                   2  = Second or downstream or outlet condition   22. R. B.  Bird, W.  E. Stewart, and E. N. Lightfoot, Transport Phe-
                                                                      nomena, 1960, J. Wiley, New York, p. 12.
                   a = Initial capacity or first condition
                                                                   23. Brodkey, R. S. and H. C. Hershey, Transport Phenomena, 1988,
                   b  = New capacity or second condition
                                                                      McGraw-Hill Book Co., p. 752.
                   g = Gas
                                                                   24. Turian, R. M. and T. F. Yuan, “Flow of Slurries in Pipelines,”
                   L = Liquid                                         AICHE Journal, Vol. 23, May 1977, pp. 232-243.
                  vc  = Gradual contraction                        25. Derammelaere, R. H. and E. J. Wasp, “Fluid Flow Slurry System
                 VE  = Gradual enlargement                            and Pipelines,” Enqclopedia  of  Chemical Procasing and Design,
                                                                      1985, J. J. McKetta, Exec. Ed., M. Dekker, Vol. 22, p. 373.
                                                                   26. Babcock, H. A. and D. A. Carnell, “Transportation of Larger
                                  References                          Inert Particles in Pipelines,” presented AICHE, 83rd Nation-
                                                                      al Meeting, Paper No. 40 f, March 23, 1977, Houston, Texas.
               1. Moody, L. F.  “Friction Factors for Pipe Flow,” Trans. ASME,   27. Steindorff, G. N.,  “Adequate Slurry Pipeline Design Exists,”
                Vol. 66, NOV. 1944, pp. 671-678.                      Oil and Gas Journal, Dec. 22, 1980, p. 75.
               2. Enginemhg  Data  Book,  2nd  Ed.,  1979, Hydraulic  Institute,   28. Ruskin,  R.  P.,  “Calculating Line  Sizes for  Flashing  Steam
                 30200 Detroit Road, Cleveland, Ohio 44145-1967.      Condensate,” Chem. Eng., Aug. 18, 1985, p. 101.
               3. Crane Go. Engineering Div.  Technical Paper No. 410, Flow of   29. Dukler, A. E., Wicks, M. and Cleveland, R. G., AZCHE Journal,
                Fluids Through Values, Fittings and Pipe, 1976.       1964, \bl. 10, p. 44.
               4. Shaw,  G.  V.,  Editor,  and A.  W.  Loomis,  Cameron Hydraulic   30. Soliman, R. H. and Collier, P.  E.,  “Pressure Drop in Slurry
                Data, 1942, Ingersoll-Rand Co., 11 Broadway, New York, N.Y.,   Lines,” Hydrocarbon Processing, 1990, Vol. 69, No.  11.
                 also see [54].                                    31. Morrison, G. L., DeOtte, Jr., R. E., Panak, D. L., and Nail, G.
               5. Perry, R. H. and Don Green, Perry’s ChemicalEngineer’s Hand-   H.,  “The Flow  Field  Inside  an  Orifice  Flow  Meter,” Chem.
                 book, 6th Ed., 1984, McGraw-Hill, Inc., pp. 5-24.    Eng?: Prog., 1990, Vol. 86, No. 7.
   176   177   178   179   180   181   182   183   184   185   186