Page 171 - Applied Statistics And Probability For Engineers
P. 171

c05.qxd  5/13/02  1:49 PM  Page 147 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:






                                                                      5-1 TWO DISCRETE RANDOM VARIABLES   147


                                   The function f Y x (y) is used to find the probabilities of the possible values for Y given that X   x.
                                   That is, it is the probability mass function for the possible values of Y given that X   x. More pre-
                                   cisely, let R x denote the set of all points in the range of (X, Y) for which X   x. The conditional
                                   probability mass function provides the conditional probabilities for the values of Y in the set R x .



                                       Because a conditional probability mass function  f Y ƒ x 1y2  is a probability mass func-
                                       tion for all y in R x , the following properties are satisfied:

                                          (1)  f Y ƒx 1 y2   0
                                          (2)  a   f Y ƒ x 1y2   1
                                                R x
                                           (3)  P1Y   y 0  X   x2   f Y ƒ x 1 y2                      (5-5)



                 EXAMPLE 5-6       For the joint probability distribution in Fig. 5-1,  f Y ƒ x 1 y2  is found by dividing each f XY (x, y) by
                                   f (x). Here, f (x) is simply the sum of the probabilities in each column of Fig. 5-1. The func-
                                             X
                                    X
                                   tion  f Y ƒx 1 y2  is shown in Fig. 5-3. In Fig. 5-3, each column sums to one because it is a proba-
                                   bility distribution.
                                       Properties of random variables can be extended to a conditional probability distribution
                                   of Y given X   x. The usual formulas for mean and variance can be applied to a conditional
                                   probability mass function.

                          Definition
                                       Let  R x denote the set of all points in the range of (X,  Y) for which  X   x. The
                                       conditional mean of Y given X   x, denoted as E1Y 0 x2  or   Y ƒ x , is

                                                                E1Y 0 x2    a   y f Y ƒ x 1y2         (5-6)
                                                                         R x
                                                                                                2
                                       and the conditional variance of Y given X   x, denoted as V1Y 0  x2  or   Y ƒ x , is
                                                                                             2
                                                                      2
                                                                                   2
                                                  V1Y 0 x2    a  1 y    Y ƒx 2 f Y ƒ x 1 y2    a   y f Y ƒx  1 y2    Y ƒ x
                                                           R x                  R x
                                    y


                                      0.410
                                   4
                                      0.410     0.511
                                   3
                                      0.154     0.383     0.640
                                   2
                 Figure 5-3
                                      0.0256    0.096     0.320    0.800
                 Conditional probability  1
                 distributions of Y given
                 X   x, f Y  ƒx  1 y2  in  0.0016  0.008  0.040    0.200     1.0
                                   0
                 Example 5-6.        0         1        2         3         4     x
   166   167   168   169   170   171   172   173   174   175   176